异构集群多资源调度与任务克隆

Huanle Xu, Yang Liu, W. Lau
{"title":"异构集群多资源调度与任务克隆","authors":"Huanle Xu, Yang Liu, W. Lau","doi":"10.1145/3545008.3545093","DOIUrl":null,"url":null,"abstract":"To mitigate the straggler effect, today’s systems and computing frameworks have adopted redundancy to launch extra copies for stragglers. Two limitations of the existing straggler-mitigation techniques, however, are that resource demand of tasks is only considered in the context of slots and, moreover, redundancy is seldom coordinated with job scheduling. To tackle these issues, in this paper, we present DollyMP, a job scheduler that addresses multi-resource scheduling with task cloning in heterogeneous clusters. DollyMP carefully combines SRPT (Shortest Remaining Processing Time) and SVF (Smallest Volume First) via knapsack optimization to schedule tasks with multi-resource demands and, in the meanwhile, dynamically launches task clones to yield a small job completion time. DollyMP is built on a strong mathematical foundation to guarantee near-optimal performance. The deployment of our Hadoop YARN prototype on a 30-node cluster demonstrates that DollyMP can reduce job response time by 50% under different cluster loads.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi Resource Scheduling with Task Cloning in Heterogeneous Clusters\",\"authors\":\"Huanle Xu, Yang Liu, W. Lau\",\"doi\":\"10.1145/3545008.3545093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To mitigate the straggler effect, today’s systems and computing frameworks have adopted redundancy to launch extra copies for stragglers. Two limitations of the existing straggler-mitigation techniques, however, are that resource demand of tasks is only considered in the context of slots and, moreover, redundancy is seldom coordinated with job scheduling. To tackle these issues, in this paper, we present DollyMP, a job scheduler that addresses multi-resource scheduling with task cloning in heterogeneous clusters. DollyMP carefully combines SRPT (Shortest Remaining Processing Time) and SVF (Smallest Volume First) via knapsack optimization to schedule tasks with multi-resource demands and, in the meanwhile, dynamically launches task clones to yield a small job completion time. DollyMP is built on a strong mathematical foundation to guarantee near-optimal performance. The deployment of our Hadoop YARN prototype on a 30-node cluster demonstrates that DollyMP can reduce job response time by 50% under different cluster loads.\",\"PeriodicalId\":360504,\"journal\":{\"name\":\"Proceedings of the 51st International Conference on Parallel Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 51st International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3545008.3545093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了减轻掉队者效应,今天的系统和计算框架已经采用冗余来为掉队者启动额外的副本。然而,现有的掉队缓解技术的两个局限性是,任务的资源需求仅在插槽的背景下考虑,而且,冗余很少与作业调度协调。为了解决这些问题,在本文中,我们提出了一个作业调度器DollyMP,它解决了在异构集群中使用任务克隆进行多资源调度的问题。DollyMP通过背包优化巧妙地将SRPT(最短剩余处理时间)和SVF(最小体积优先)结合起来,以调度具有多资源需求的任务,同时动态启动任务克隆以产生较小的作业完成时间。DollyMP建立在强大的数学基础上,以保证接近最佳的性能。在30个节点的集群上部署Hadoop YARN原型表明,在不同的集群负载下,DollyMP可以将作业响应时间减少50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi Resource Scheduling with Task Cloning in Heterogeneous Clusters
To mitigate the straggler effect, today’s systems and computing frameworks have adopted redundancy to launch extra copies for stragglers. Two limitations of the existing straggler-mitigation techniques, however, are that resource demand of tasks is only considered in the context of slots and, moreover, redundancy is seldom coordinated with job scheduling. To tackle these issues, in this paper, we present DollyMP, a job scheduler that addresses multi-resource scheduling with task cloning in heterogeneous clusters. DollyMP carefully combines SRPT (Shortest Remaining Processing Time) and SVF (Smallest Volume First) via knapsack optimization to schedule tasks with multi-resource demands and, in the meanwhile, dynamically launches task clones to yield a small job completion time. DollyMP is built on a strong mathematical foundation to guarantee near-optimal performance. The deployment of our Hadoop YARN prototype on a 30-node cluster demonstrates that DollyMP can reduce job response time by 50% under different cluster loads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信