{"title":"非参数惩罚规划与迭代阈值的线性规划","authors":"Jeffery Kline, Glenn M. Fung","doi":"10.1080/10556788.2022.2117356","DOIUrl":null,"url":null,"abstract":"It is known [Mangasarian, A Newton method for linear programming, J. Optim. Theory Appl. 121 (2004), pp. 1–18] that every linear program can be solved exactly by minimizing an unconstrained quadratic penalty program. The penalty program is parameterized by a scalar t>0, and one is able to solve the original linear program in this manner when t is selected larger than a finite, but unknown . In this paper, we show that every linear program can be solved using the solution to a parameter-free penalty program. We also characterize the solutions to the quadratic penalty programs using fixed points of certain nonexpansive maps. This leads to an iterative thresholding algorithm that converges to a desired limit point. We show in numerical experiments that this iterative method can outperform a variety of standard quadratic program solvers. Finally, we show that for every , the solution one obtains by solving a parameterized penalty program is guaranteed to lie in the feasible set of the original linear program.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear programming with nonparametric penalty programs and iterated thresholding\",\"authors\":\"Jeffery Kline, Glenn M. Fung\",\"doi\":\"10.1080/10556788.2022.2117356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known [Mangasarian, A Newton method for linear programming, J. Optim. Theory Appl. 121 (2004), pp. 1–18] that every linear program can be solved exactly by minimizing an unconstrained quadratic penalty program. The penalty program is parameterized by a scalar t>0, and one is able to solve the original linear program in this manner when t is selected larger than a finite, but unknown . In this paper, we show that every linear program can be solved using the solution to a parameter-free penalty program. We also characterize the solutions to the quadratic penalty programs using fixed points of certain nonexpansive maps. This leads to an iterative thresholding algorithm that converges to a desired limit point. We show in numerical experiments that this iterative method can outperform a variety of standard quadratic program solvers. Finally, we show that for every , the solution one obtains by solving a parameterized penalty program is guaranteed to lie in the feasible set of the original linear program.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2117356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2117356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
[A Newton method for linear programming, J. Optim]。理论应用,121 (2004),pp. 1-18],每个线性规划都可以通过最小化无约束二次惩罚规划来精确求解。惩罚规划用标量t>0参数化,当选择t大于一个有限但未知的值时,可以用这种方法求解原线性规划。本文证明了每一个线性规划都可以用无参数惩罚规划的解来求解。我们还利用非膨胀映射的不动点对二次惩罚规划的解进行了刻画。这导致迭代阈值算法收敛到期望的极限点。数值实验表明,这种迭代方法优于各种标准的二次规划求解方法。最后,我们证明了对于每一个,通过求解参数化惩罚规划得到的解都保证在原线性规划的可行集中。
Linear programming with nonparametric penalty programs and iterated thresholding
It is known [Mangasarian, A Newton method for linear programming, J. Optim. Theory Appl. 121 (2004), pp. 1–18] that every linear program can be solved exactly by minimizing an unconstrained quadratic penalty program. The penalty program is parameterized by a scalar t>0, and one is able to solve the original linear program in this manner when t is selected larger than a finite, but unknown . In this paper, we show that every linear program can be solved using the solution to a parameter-free penalty program. We also characterize the solutions to the quadratic penalty programs using fixed points of certain nonexpansive maps. This leads to an iterative thresholding algorithm that converges to a desired limit point. We show in numerical experiments that this iterative method can outperform a variety of standard quadratic program solvers. Finally, we show that for every , the solution one obtains by solving a parameterized penalty program is guaranteed to lie in the feasible set of the original linear program.