{"title":"反传播光波的横向调制不稳定性","authors":"G. Luther, C. McKinstrie","doi":"10.1364/JOSAB.9.001047","DOIUrl":null,"url":null,"abstract":"The transverse modulational instability (TMI) of two counterpropagating light waves in finite Kerr media is modeled by a pair of coupled nonlinear Schroedinger equations. This model predicts that transverse modulations in the wave amplitudes can be either convectively or absolutely unstable, in both self-focusing and self-defocusing media. In general, both frequency- and wavenumber-shifted sideband modes can grow if the wave intensities are unequal.","PeriodicalId":441335,"journal":{"name":"Nonlinear Dynamics in Optical Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Transverse Modulational Instability of Counterpropagating Light Waves\",\"authors\":\"G. Luther, C. McKinstrie\",\"doi\":\"10.1364/JOSAB.9.001047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transverse modulational instability (TMI) of two counterpropagating light waves in finite Kerr media is modeled by a pair of coupled nonlinear Schroedinger equations. This model predicts that transverse modulations in the wave amplitudes can be either convectively or absolutely unstable, in both self-focusing and self-defocusing media. In general, both frequency- and wavenumber-shifted sideband modes can grow if the wave intensities are unequal.\",\"PeriodicalId\":441335,\"journal\":{\"name\":\"Nonlinear Dynamics in Optical Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Dynamics in Optical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAB.9.001047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics in Optical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/JOSAB.9.001047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transverse Modulational Instability of Counterpropagating Light Waves
The transverse modulational instability (TMI) of two counterpropagating light waves in finite Kerr media is modeled by a pair of coupled nonlinear Schroedinger equations. This model predicts that transverse modulations in the wave amplitudes can be either convectively or absolutely unstable, in both self-focusing and self-defocusing media. In general, both frequency- and wavenumber-shifted sideband modes can grow if the wave intensities are unequal.