ni掺杂CoSb/ sub3 /的导热性分析

H. Kitagawa, M. Wakatsuki, Y. Isoda, Y. Shinohara, K. Hasezaki, Y. Noda
{"title":"ni掺杂CoSb/ sub3 /的导热性分析","authors":"H. Kitagawa, M. Wakatsuki, Y. Isoda, Y. Shinohara, K. Hasezaki, Y. Noda","doi":"10.1109/ICT.2005.1519983","DOIUrl":null,"url":null,"abstract":"Co/sub 1-x/Ni/sub x/Sb/sub 3/ (x = 0.005/spl ap/0.1) samples were prepared by direct melting of constituent elements in a graphite crucible and subsequently was sintered using spark plasma sintering. The temperature dependence of the Hall coefficient, Hall mobility, Seebeck coefficient, electrical resistivity and thermal conductivity were investigated in a temperature range from 20 to 773 K. All the measured samples are n-type semiconductor and the conduction type changes from n- to p-type at around 450 K. The temperature for the transition from n-type to p-type increased with increasing Ni content x. The scattering factor, Fermi energy and Lorenz number were estimated and thermal conductivity was analyzed as a function of temperature. The lattice component of thermal conductivity is dominant at low temperatures but carrier and bipolar components become large at temperatures higher than the transition temperature.","PeriodicalId":422400,"journal":{"name":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of thermal conductivity in Ni-doped CoSb/sub 3/\",\"authors\":\"H. Kitagawa, M. Wakatsuki, Y. Isoda, Y. Shinohara, K. Hasezaki, Y. Noda\",\"doi\":\"10.1109/ICT.2005.1519983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co/sub 1-x/Ni/sub x/Sb/sub 3/ (x = 0.005/spl ap/0.1) samples were prepared by direct melting of constituent elements in a graphite crucible and subsequently was sintered using spark plasma sintering. The temperature dependence of the Hall coefficient, Hall mobility, Seebeck coefficient, electrical resistivity and thermal conductivity were investigated in a temperature range from 20 to 773 K. All the measured samples are n-type semiconductor and the conduction type changes from n- to p-type at around 450 K. The temperature for the transition from n-type to p-type increased with increasing Ni content x. The scattering factor, Fermi energy and Lorenz number were estimated and thermal conductivity was analyzed as a function of temperature. The lattice component of thermal conductivity is dominant at low temperatures but carrier and bipolar components become large at temperatures higher than the transition temperature.\",\"PeriodicalId\":422400,\"journal\":{\"name\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT 2005. 24th International Conference on Thermoelectrics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICT.2005.1519983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT 2005. 24th International Conference on Thermoelectrics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2005.1519983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在石墨坩埚中直接熔炼Co/sub - 1-x/Ni/sub -x/ Sb/sub - 3/ (x = 0.005/spl ap/0.1)样品,然后用火花等离子烧结进行烧结。在20 ~ 773 K的温度范围内,研究了霍尔系数、霍尔迁移率、塞贝克系数、电阻率和导热系数的温度依赖性。所测样品均为n型半导体,在450k左右,导型由n型转变为p型。随着Ni含量x的增加,从n型转变为p型的温度升高。估计了散射系数、费米能量和洛伦兹数,并分析了导热系数随温度的函数关系。在低温下,导热系数的晶格分量占主导地位,而在高于转变温度的温度下,载流子和双极分量变得很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of thermal conductivity in Ni-doped CoSb/sub 3/
Co/sub 1-x/Ni/sub x/Sb/sub 3/ (x = 0.005/spl ap/0.1) samples were prepared by direct melting of constituent elements in a graphite crucible and subsequently was sintered using spark plasma sintering. The temperature dependence of the Hall coefficient, Hall mobility, Seebeck coefficient, electrical resistivity and thermal conductivity were investigated in a temperature range from 20 to 773 K. All the measured samples are n-type semiconductor and the conduction type changes from n- to p-type at around 450 K. The temperature for the transition from n-type to p-type increased with increasing Ni content x. The scattering factor, Fermi energy and Lorenz number were estimated and thermal conductivity was analyzed as a function of temperature. The lattice component of thermal conductivity is dominant at low temperatures but carrier and bipolar components become large at temperatures higher than the transition temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信