基于YOLOv8x模型结合RepEca网络结构识别糖尿病和肺结核的影像学特征

Wenjun Li, Linjun Jiang, Zezhou Zhu, Yanfan Li, Hua Peng, Diqing Liang, Hongzhong Yang, Weijun Liang
{"title":"基于YOLOv8x模型结合RepEca网络结构识别糖尿病和肺结核的影像学特征","authors":"Wenjun Li, Linjun Jiang, Zezhou Zhu, Yanfan Li, Hua Peng, Diqing Liang, Hongzhong Yang, Weijun Liang","doi":"10.1109/prmvia58252.2023.00032","DOIUrl":null,"url":null,"abstract":"Tuberculosis and diabetes mellitus are highly prevalent clinical conditions worldwide, and the mortality rate of tuberculosis is high; when diabetes mellitus is combined with tuberculosis, the interaction between the two can lead to a vicious cycle, posing a serious threat to the physical and mental health and life safety of patients, especially in developing regions where medical resources are scarce. In this paper, We trained several deep learning algorithm models based on YOLOv5, YOLOv8x, Faster R- CNN and Mask R-CNN with 4 types of lesion features commonly found in 1024 images, from which we selected the algorithm with the best automatic feature recognition effect and optimized the model to further improve the recognition efficiency. Combining the complexity of lesion features and experimental results, we propose a YOLOv8x model based on RepEca network structure and ESE attention mechanism, which is more effective than the original YOLOv8x in application, with an F1 metric value of 71.19%, and can better identify lesion features in images, assisting clinicians to improve the diagnostic accuracy and treatment effect.","PeriodicalId":221346,"journal":{"name":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification Of Imaging Features Of Diabetes Mellitus And Tuberculosis Based On YOLOv8x Model Combined With RepEca Network Structure\",\"authors\":\"Wenjun Li, Linjun Jiang, Zezhou Zhu, Yanfan Li, Hua Peng, Diqing Liang, Hongzhong Yang, Weijun Liang\",\"doi\":\"10.1109/prmvia58252.2023.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tuberculosis and diabetes mellitus are highly prevalent clinical conditions worldwide, and the mortality rate of tuberculosis is high; when diabetes mellitus is combined with tuberculosis, the interaction between the two can lead to a vicious cycle, posing a serious threat to the physical and mental health and life safety of patients, especially in developing regions where medical resources are scarce. In this paper, We trained several deep learning algorithm models based on YOLOv5, YOLOv8x, Faster R- CNN and Mask R-CNN with 4 types of lesion features commonly found in 1024 images, from which we selected the algorithm with the best automatic feature recognition effect and optimized the model to further improve the recognition efficiency. Combining the complexity of lesion features and experimental results, we propose a YOLOv8x model based on RepEca network structure and ESE attention mechanism, which is more effective than the original YOLOv8x in application, with an F1 metric value of 71.19%, and can better identify lesion features in images, assisting clinicians to improve the diagnostic accuracy and treatment effect.\",\"PeriodicalId\":221346,\"journal\":{\"name\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prmvia58252.2023.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prmvia58252.2023.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结核病和糖尿病是世界范围内非常普遍的临床疾病,结核病的死亡率很高;当糖尿病与肺结核合并时,两者的相互作用会导致恶性循环,对患者的身心健康和生命安全构成严重威胁,特别是在医疗资源匮乏的发展中地区。本文针对1024张图像中常见的4种病灶特征,基于YOLOv5、YOLOv8x、Faster R-CNN和Mask R-CNN训练了几种深度学习算法模型,从中选择自动特征识别效果最好的算法,并对模型进行优化,进一步提高识别效率。结合病变特征的复杂性和实验结果,我们提出了一种基于RepEca网络结构和ESE注意机制的YOLOv8x模型,该模型在应用上比原来的YOLOv8x模型更有效,F1度量值为71.19%,能够更好地识别图像中的病变特征,帮助临床医生提高诊断准确性和治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification Of Imaging Features Of Diabetes Mellitus And Tuberculosis Based On YOLOv8x Model Combined With RepEca Network Structure
Tuberculosis and diabetes mellitus are highly prevalent clinical conditions worldwide, and the mortality rate of tuberculosis is high; when diabetes mellitus is combined with tuberculosis, the interaction between the two can lead to a vicious cycle, posing a serious threat to the physical and mental health and life safety of patients, especially in developing regions where medical resources are scarce. In this paper, We trained several deep learning algorithm models based on YOLOv5, YOLOv8x, Faster R- CNN and Mask R-CNN with 4 types of lesion features commonly found in 1024 images, from which we selected the algorithm with the best automatic feature recognition effect and optimized the model to further improve the recognition efficiency. Combining the complexity of lesion features and experimental results, we propose a YOLOv8x model based on RepEca network structure and ESE attention mechanism, which is more effective than the original YOLOv8x in application, with an F1 metric value of 71.19%, and can better identify lesion features in images, assisting clinicians to improve the diagnostic accuracy and treatment effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信