{"title":"衰减全内反射激发形变石墨烯表面等离子体极化子","authors":"M. Usik, I. Bychkov, V. Shavrov, D. Kuzmin","doi":"10.1515/oms-2019-0004","DOIUrl":null,"url":null,"abstract":"Abstract In the present work we theoretically investigated the excitation of surface plasmon-polaritons (SPPs) in deformed graphene by attenuated total reflection method. We considered the Otto geometry for SPPs excitation in graphene. Efficiency of SPPs excitation strongly depends on the SPPs propagation direction. The frequency and the incident angle of the most effective excitation of SPPs strongly depend on the polarization of the incident light. Our results may open up the new possibilities for strain-induced molding flow of light at nanoscales.","PeriodicalId":157396,"journal":{"name":"Open Material Sciences","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Surface plasmon-polaritons in deformed graphene excited by attenuated total internal reflection\",\"authors\":\"M. Usik, I. Bychkov, V. Shavrov, D. Kuzmin\",\"doi\":\"10.1515/oms-2019-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present work we theoretically investigated the excitation of surface plasmon-polaritons (SPPs) in deformed graphene by attenuated total reflection method. We considered the Otto geometry for SPPs excitation in graphene. Efficiency of SPPs excitation strongly depends on the SPPs propagation direction. The frequency and the incident angle of the most effective excitation of SPPs strongly depend on the polarization of the incident light. Our results may open up the new possibilities for strain-induced molding flow of light at nanoscales.\",\"PeriodicalId\":157396,\"journal\":{\"name\":\"Open Material Sciences\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Material Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/oms-2019-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Material Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/oms-2019-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface plasmon-polaritons in deformed graphene excited by attenuated total internal reflection
Abstract In the present work we theoretically investigated the excitation of surface plasmon-polaritons (SPPs) in deformed graphene by attenuated total reflection method. We considered the Otto geometry for SPPs excitation in graphene. Efficiency of SPPs excitation strongly depends on the SPPs propagation direction. The frequency and the incident angle of the most effective excitation of SPPs strongly depend on the polarization of the incident light. Our results may open up the new possibilities for strain-induced molding flow of light at nanoscales.