Yasmine Serdouk, V. Eglin, S. Bres, Mylène Pardoen
{"title":"基于Siamese三重态深度神经网络的关键词识别","authors":"Yasmine Serdouk, V. Eglin, S. Bres, Mylène Pardoen","doi":"10.1109/ICDAR.2019.00187","DOIUrl":null,"url":null,"abstract":"Deep neural networks has shown great success in computer vision fields by achieving considerable state-of-the-art results and are beginning to arouse big interest in the document analysis community. In this paper, we present a novel siamese deep network of three inputs that allows retrieving the most similar words to a given query. The proposed system follows a query-by-example approach according to a segmentation-based technique and aims to learn suitable representations of handwritten word images, for which a simple Euclidean distance could perform the matching. The results obtained for the George Washington dataset show the potential and the effectiveness of the proposed keyword spotting system.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"KeyWord Spotting using Siamese Triplet Deep Neural Networks\",\"authors\":\"Yasmine Serdouk, V. Eglin, S. Bres, Mylène Pardoen\",\"doi\":\"10.1109/ICDAR.2019.00187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks has shown great success in computer vision fields by achieving considerable state-of-the-art results and are beginning to arouse big interest in the document analysis community. In this paper, we present a novel siamese deep network of three inputs that allows retrieving the most similar words to a given query. The proposed system follows a query-by-example approach according to a segmentation-based technique and aims to learn suitable representations of handwritten word images, for which a simple Euclidean distance could perform the matching. The results obtained for the George Washington dataset show the potential and the effectiveness of the proposed keyword spotting system.\",\"PeriodicalId\":325437,\"journal\":{\"name\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2019.00187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
KeyWord Spotting using Siamese Triplet Deep Neural Networks
Deep neural networks has shown great success in computer vision fields by achieving considerable state-of-the-art results and are beginning to arouse big interest in the document analysis community. In this paper, we present a novel siamese deep network of three inputs that allows retrieving the most similar words to a given query. The proposed system follows a query-by-example approach according to a segmentation-based technique and aims to learn suitable representations of handwritten word images, for which a simple Euclidean distance could perform the matching. The results obtained for the George Washington dataset show the potential and the effectiveness of the proposed keyword spotting system.