条件可能性分布的测量应用

A. Ferrero, M. Prioli, S. Salicone
{"title":"条件可能性分布的测量应用","authors":"A. Ferrero, M. Prioli, S. Salicone","doi":"10.1109/I2MTC.2014.6860801","DOIUrl":null,"url":null,"abstract":"Conditional probability distributions and Bayes' theorem are an important and powerful tool in measurement, whenever a priori information about the measurand is available. It is well-known that the measurement result and associated uncertainty (a posteriori information) can be used to revise the a priori information and, hopefully, decrease its uncertainty. This tool can be used only if both a priori and a posteriori information can be expressed in terms of a probability distribution. A recent approach to uncertainty evaluation expresses measurement results in terms of Random Fuzzy Variables (RFVs), that is in terms of possibility distributions, instead of probability distributions. This paper proposes an extension of the concept of conditional distributions and Bayes theorem to the possibility distributions, and considers a simple measurement example to prove its validity.","PeriodicalId":331484,"journal":{"name":"2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A measurement application of conditional possibility distributions\",\"authors\":\"A. Ferrero, M. Prioli, S. Salicone\",\"doi\":\"10.1109/I2MTC.2014.6860801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conditional probability distributions and Bayes' theorem are an important and powerful tool in measurement, whenever a priori information about the measurand is available. It is well-known that the measurement result and associated uncertainty (a posteriori information) can be used to revise the a priori information and, hopefully, decrease its uncertainty. This tool can be used only if both a priori and a posteriori information can be expressed in terms of a probability distribution. A recent approach to uncertainty evaluation expresses measurement results in terms of Random Fuzzy Variables (RFVs), that is in terms of possibility distributions, instead of probability distributions. This paper proposes an extension of the concept of conditional distributions and Bayes theorem to the possibility distributions, and considers a simple measurement example to prove its validity.\",\"PeriodicalId\":331484,\"journal\":{\"name\":\"2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2014.6860801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2014.6860801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

条件概率分布和贝叶斯定理在测量中是一种重要而有力的工具,只要有关于被测量的先验信息可用。众所周知,测量结果和相关的不确定度(后验信息)可以用来修正先验信息,并有望降低其不确定度。只有当先验和后验信息都可以用概率分布表示时,这个工具才能使用。最近的一种不确定度评估方法用随机模糊变量(rfv)来表示测量结果,即用可能性分布来代替概率分布。本文将条件分布和贝叶斯定理的概念推广到可能性分布,并通过一个简单的测量实例证明了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A measurement application of conditional possibility distributions
Conditional probability distributions and Bayes' theorem are an important and powerful tool in measurement, whenever a priori information about the measurand is available. It is well-known that the measurement result and associated uncertainty (a posteriori information) can be used to revise the a priori information and, hopefully, decrease its uncertainty. This tool can be used only if both a priori and a posteriori information can be expressed in terms of a probability distribution. A recent approach to uncertainty evaluation expresses measurement results in terms of Random Fuzzy Variables (RFVs), that is in terms of possibility distributions, instead of probability distributions. This paper proposes an extension of the concept of conditional distributions and Bayes theorem to the possibility distributions, and considers a simple measurement example to prove its validity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信