S. Kandukuri, J. Lebreton, N. Murad, R. Lorion, Jean-Daniel Lan Sun Luk
{"title":"基于自适应数据聚合窗口函数(A-DAWF)的无线传感器网络节能聚类协议","authors":"S. Kandukuri, J. Lebreton, N. Murad, R. Lorion, Jean-Daniel Lan Sun Luk","doi":"10.1109/WoWMoM.2016.7523529","DOIUrl":null,"url":null,"abstract":"We present an adaptive data aggregative window function (A-DAWF) for a distributed sensor network model in which nodes store data in their attribute window functions, and provide non-correlated data towards the base station (BS). Unlike previous works, namely data collection or data gathering management systems, we propose a novel approach that aims to process temporal redundant techniques in sensor nodes as well as providing spatial redundant filtration methods in cluster-head (CH) nodes. In this regard, preliminary results show that A-DAWF can suppress up to 90% of temporal redundant data among the considered sensor nodes by an optimal threshold of the window sizes, and their spatial correlations in CH node by a maximum error threshold compared to either periodic or a continuous data transmission system.","PeriodicalId":187747,"journal":{"name":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Energy-efficient cluster-based protocol using an adaptive data aggregative window function (A-DAWF) for wireless sensor networks\",\"authors\":\"S. Kandukuri, J. Lebreton, N. Murad, R. Lorion, Jean-Daniel Lan Sun Luk\",\"doi\":\"10.1109/WoWMoM.2016.7523529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an adaptive data aggregative window function (A-DAWF) for a distributed sensor network model in which nodes store data in their attribute window functions, and provide non-correlated data towards the base station (BS). Unlike previous works, namely data collection or data gathering management systems, we propose a novel approach that aims to process temporal redundant techniques in sensor nodes as well as providing spatial redundant filtration methods in cluster-head (CH) nodes. In this regard, preliminary results show that A-DAWF can suppress up to 90% of temporal redundant data among the considered sensor nodes by an optimal threshold of the window sizes, and their spatial correlations in CH node by a maximum error threshold compared to either periodic or a continuous data transmission system.\",\"PeriodicalId\":187747,\"journal\":{\"name\":\"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM.2016.7523529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2016.7523529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-efficient cluster-based protocol using an adaptive data aggregative window function (A-DAWF) for wireless sensor networks
We present an adaptive data aggregative window function (A-DAWF) for a distributed sensor network model in which nodes store data in their attribute window functions, and provide non-correlated data towards the base station (BS). Unlike previous works, namely data collection or data gathering management systems, we propose a novel approach that aims to process temporal redundant techniques in sensor nodes as well as providing spatial redundant filtration methods in cluster-head (CH) nodes. In this regard, preliminary results show that A-DAWF can suppress up to 90% of temporal redundant data among the considered sensor nodes by an optimal threshold of the window sizes, and their spatial correlations in CH node by a maximum error threshold compared to either periodic or a continuous data transmission system.