基于主成分回归和支持向量回归的炼油厂输出质量推理感知

V. Jain, P. Kishore, R. Kumar, A. K. Pani
{"title":"基于主成分回归和支持向量回归的炼油厂输出质量推理感知","authors":"V. Jain, P. Kishore, R. Kumar, A. K. Pani","doi":"10.1109/IACC.2017.0101","DOIUrl":null,"url":null,"abstract":"In this research, linear regression (ordinary least square and principal component) and non-linear regression (standard and least square support vector) models are developed for prediction of output quality from sulphur recovery unit. The hyper parameters associated with standard SVR and LS-SVR are determined analytically using the guidelines proposed in the literature. The relevant input-output data for process variables are taken from open source literature. The training set and validation set are statistically designed from the total data. The designed training data were used for design of the process model and the remaining validation data were used for model performance evaluation. Simulation results show superior performance of the standard SVR model over other models.","PeriodicalId":248433,"journal":{"name":"2017 IEEE 7th International Advance Computing Conference (IACC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Inferential Sensing of Output Quality in Petroleum Refinery Using Principal Component Regression and Support Vector Regression\",\"authors\":\"V. Jain, P. Kishore, R. Kumar, A. K. Pani\",\"doi\":\"10.1109/IACC.2017.0101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, linear regression (ordinary least square and principal component) and non-linear regression (standard and least square support vector) models are developed for prediction of output quality from sulphur recovery unit. The hyper parameters associated with standard SVR and LS-SVR are determined analytically using the guidelines proposed in the literature. The relevant input-output data for process variables are taken from open source literature. The training set and validation set are statistically designed from the total data. The designed training data were used for design of the process model and the remaining validation data were used for model performance evaluation. Simulation results show superior performance of the standard SVR model over other models.\",\"PeriodicalId\":248433,\"journal\":{\"name\":\"2017 IEEE 7th International Advance Computing Conference (IACC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 7th International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACC.2017.0101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACC.2017.0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文采用线性回归(普通最小二乘和主成分)和非线性回归(标准和最小二乘支持向量)模型对硫磺回收装置的产出质量进行预测。与标准SVR和LS-SVR相关的超参数使用文献中提出的准则进行分析确定。过程变量的相关输入输出数据取自开源文献。训练集和验证集是根据总数据进行统计设计的。设计的训练数据用于流程模型的设计,剩余的验证数据用于模型性能评估。仿真结果表明,标准支持向量回归模型的性能优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferential Sensing of Output Quality in Petroleum Refinery Using Principal Component Regression and Support Vector Regression
In this research, linear regression (ordinary least square and principal component) and non-linear regression (standard and least square support vector) models are developed for prediction of output quality from sulphur recovery unit. The hyper parameters associated with standard SVR and LS-SVR are determined analytically using the guidelines proposed in the literature. The relevant input-output data for process variables are taken from open source literature. The training set and validation set are statistically designed from the total data. The designed training data were used for design of the process model and the remaining validation data were used for model performance evaluation. Simulation results show superior performance of the standard SVR model over other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信