同态加密的基因型插入

Fook Mun Chan, Ahmad Al Badawi, Jun Jie Sim, B. Tan, Foo Chuan Sheng, Khin Mi Mi Aung
{"title":"同态加密的基因型插入","authors":"Fook Mun Chan, Ahmad Al Badawi, Jun Jie Sim, B. Tan, Foo Chuan Sheng, Khin Mi Mi Aung","doi":"10.1145/3484424.3484426","DOIUrl":null,"url":null,"abstract":"Genotype imputation is a technique used to determine unobserved genomic markers when sequencing genomic data. This is a cost effective method for sequencing a genome. Due to the large amount of personal identifiable information involved in genomic imputation, there is a rising concern for analysis of such nature to be secure and private. We describe a method using homomorphic encryption (HE) to perform genotype imputation in a secure and private setting. Our solution first involves training a logistic regression model and performing the imputation in the encrypted domain. We have implemented our solution over using the open sourced Homomorphic Encryption library, SEAL. We are able to impute 500 SNPs within 5 minutes, with an accuracy of 97.3%.","PeriodicalId":225954,"journal":{"name":"Proceedings of the 6th International Conference on Biomedical Signal and Image Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Genotype Imputation with Homomorphic Encryption\",\"authors\":\"Fook Mun Chan, Ahmad Al Badawi, Jun Jie Sim, B. Tan, Foo Chuan Sheng, Khin Mi Mi Aung\",\"doi\":\"10.1145/3484424.3484426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genotype imputation is a technique used to determine unobserved genomic markers when sequencing genomic data. This is a cost effective method for sequencing a genome. Due to the large amount of personal identifiable information involved in genomic imputation, there is a rising concern for analysis of such nature to be secure and private. We describe a method using homomorphic encryption (HE) to perform genotype imputation in a secure and private setting. Our solution first involves training a logistic regression model and performing the imputation in the encrypted domain. We have implemented our solution over using the open sourced Homomorphic Encryption library, SEAL. We are able to impute 500 SNPs within 5 minutes, with an accuracy of 97.3%.\",\"PeriodicalId\":225954,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Biomedical Signal and Image Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Biomedical Signal and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3484424.3484426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Biomedical Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3484424.3484426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基因型插入是一种在测序基因组数据时用于确定未观察到的基因组标记的技术。这是一种经济有效的基因组测序方法。由于基因组植入涉及大量的个人身份信息,人们越来越关注这种性质的分析的安全性和私密性。我们描述了一种方法,使用同态加密(HE)执行基因型插入在安全和私人设置。我们的解决方案首先涉及训练逻辑回归模型并在加密域中执行插入。我们通过使用开源的同态加密库SEAL实现了我们的解决方案。我们能够在5分钟内估算出500个snp,准确率为97.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genotype Imputation with Homomorphic Encryption
Genotype imputation is a technique used to determine unobserved genomic markers when sequencing genomic data. This is a cost effective method for sequencing a genome. Due to the large amount of personal identifiable information involved in genomic imputation, there is a rising concern for analysis of such nature to be secure and private. We describe a method using homomorphic encryption (HE) to perform genotype imputation in a secure and private setting. Our solution first involves training a logistic regression model and performing the imputation in the encrypted domain. We have implemented our solution over using the open sourced Homomorphic Encryption library, SEAL. We are able to impute 500 SNPs within 5 minutes, with an accuracy of 97.3%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信