{"title":"动态IPC/时钟速率优化","authors":"D. Albonesi","doi":"10.1109/ISCA.1998.694788","DOIUrl":null,"url":null,"abstract":"Current microprocessor designs set the functionality and clock rate of the chip at design time based on the configuration that achieves the best overall performance over a range of target applications. The result may be poor performance when running applications whose requirements are not well-matched to the particular hardware organization chosen. We present a new approach called Complexity-Adaptive Processors (CAPs) in which the IPC/clock rate tradeoff can be altered at runtime to dynamically match the changing requirements of the instruction stream. By exploiting repeater methodologies used increasingly in deep sub-micron designs, CAPs achieve this flexibility with potentially no cycle time impact compared to a fixed architecture. Our preliminary results in applying this approach to on-chip caches and instruction queues indicate that CAPs have the potential to significantly outperform conventional approaches on workloads containing both general purpose and scientific applications.","PeriodicalId":393075,"journal":{"name":"Proceedings. 25th Annual International Symposium on Computer Architecture (Cat. No.98CB36235)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":"{\"title\":\"Dynamic IPC/clock rate optimization\",\"authors\":\"D. Albonesi\",\"doi\":\"10.1109/ISCA.1998.694788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current microprocessor designs set the functionality and clock rate of the chip at design time based on the configuration that achieves the best overall performance over a range of target applications. The result may be poor performance when running applications whose requirements are not well-matched to the particular hardware organization chosen. We present a new approach called Complexity-Adaptive Processors (CAPs) in which the IPC/clock rate tradeoff can be altered at runtime to dynamically match the changing requirements of the instruction stream. By exploiting repeater methodologies used increasingly in deep sub-micron designs, CAPs achieve this flexibility with potentially no cycle time impact compared to a fixed architecture. Our preliminary results in applying this approach to on-chip caches and instruction queues indicate that CAPs have the potential to significantly outperform conventional approaches on workloads containing both general purpose and scientific applications.\",\"PeriodicalId\":393075,\"journal\":{\"name\":\"Proceedings. 25th Annual International Symposium on Computer Architecture (Cat. No.98CB36235)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"117\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 25th Annual International Symposium on Computer Architecture (Cat. No.98CB36235)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCA.1998.694788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 25th Annual International Symposium on Computer Architecture (Cat. No.98CB36235)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCA.1998.694788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Current microprocessor designs set the functionality and clock rate of the chip at design time based on the configuration that achieves the best overall performance over a range of target applications. The result may be poor performance when running applications whose requirements are not well-matched to the particular hardware organization chosen. We present a new approach called Complexity-Adaptive Processors (CAPs) in which the IPC/clock rate tradeoff can be altered at runtime to dynamically match the changing requirements of the instruction stream. By exploiting repeater methodologies used increasingly in deep sub-micron designs, CAPs achieve this flexibility with potentially no cycle time impact compared to a fixed architecture. Our preliminary results in applying this approach to on-chip caches and instruction queues indicate that CAPs have the potential to significantly outperform conventional approaches on workloads containing both general purpose and scientific applications.