四元数广义线性估计性能优势的理论界

C. Jahanchahi, S. Kanna, D. Mandic
{"title":"四元数广义线性估计性能优势的理论界","authors":"C. Jahanchahi, S. Kanna, D. Mandic","doi":"10.1109/ICDSP.2014.6900839","DOIUrl":null,"url":null,"abstract":"The quaternion widely linear model was recently introduced for optimal second order estimation of noncircular 3D and 4D data. Its superiority over the standard strictly linear model was shown experimentally, however, a rigorous proof giving performance bounds has been lacking. To this end, we here present a mathematical proof for the degree of performance benefits obtained when using the widely linear model in the context of minimum mean square error estimation.","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A theoretical bound for the performance advantage of quaternion widely linear estimation\",\"authors\":\"C. Jahanchahi, S. Kanna, D. Mandic\",\"doi\":\"10.1109/ICDSP.2014.6900839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quaternion widely linear model was recently introduced for optimal second order estimation of noncircular 3D and 4D data. Its superiority over the standard strictly linear model was shown experimentally, however, a rigorous proof giving performance bounds has been lacking. To this end, we here present a mathematical proof for the degree of performance benefits obtained when using the widely linear model in the context of minimum mean square error estimation.\",\"PeriodicalId\":301856,\"journal\":{\"name\":\"2014 19th International Conference on Digital Signal Processing\",\"volume\":\"2017 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 19th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2014.6900839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

四元数广义线性模型最近被引入到非圆三维和四维数据的最优二阶估计中。实验证明了该模型优于标准的严格线性模型,但缺乏给出性能边界的严格证明。为此,我们在此提出了一个数学证明,证明在最小均方误差估计的情况下使用广泛线性模型所获得的性能效益程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A theoretical bound for the performance advantage of quaternion widely linear estimation
The quaternion widely linear model was recently introduced for optimal second order estimation of noncircular 3D and 4D data. Its superiority over the standard strictly linear model was shown experimentally, however, a rigorous proof giving performance bounds has been lacking. To this end, we here present a mathematical proof for the degree of performance benefits obtained when using the widely linear model in the context of minimum mean square error estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信