风力发电数据短期预测分析

A. S. Nair, P. Ranganathan, C. Finley, N. Kaabouch
{"title":"风力发电数据短期预测分析","authors":"A. S. Nair, P. Ranganathan, C. Finley, N. Kaabouch","doi":"10.1109/KPEC51835.2021.9446247","DOIUrl":null,"url":null,"abstract":"The forecasting of Wind power generation plays a critical role in the safe and stable operation of a power grid. Grid operators rely on the short-term forecasts of load and generation sources to optimize operations such as unit commitment and economic dispatch. These forecasts needs to be stable and efficient because of the low dispatchability and increasing percentage of renewable energy sources in the generation mix. We will describe the results of our performance study with different forecasting methodologies and will also propose hybrid methods for delivering consistent results with a varying dataset. The National Renewable Energy Laboratory (NREL) wind integration dataset having 5 predictor variables and a data resolution of 5 minutes is used for this analysis. Forecasting methodologies evaluated include ARIMA, RF, SVM, GLM, GAM and four additional hybrid methods. We will reveal the robust models of GLM and GLM based hybrid methods to deliver consistent forecasts of wind power generation.","PeriodicalId":392538,"journal":{"name":"2021 IEEE Kansas Power and Energy Conference (KPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-Term Forecast Analysis on Wind Power Generation Data\",\"authors\":\"A. S. Nair, P. Ranganathan, C. Finley, N. Kaabouch\",\"doi\":\"10.1109/KPEC51835.2021.9446247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The forecasting of Wind power generation plays a critical role in the safe and stable operation of a power grid. Grid operators rely on the short-term forecasts of load and generation sources to optimize operations such as unit commitment and economic dispatch. These forecasts needs to be stable and efficient because of the low dispatchability and increasing percentage of renewable energy sources in the generation mix. We will describe the results of our performance study with different forecasting methodologies and will also propose hybrid methods for delivering consistent results with a varying dataset. The National Renewable Energy Laboratory (NREL) wind integration dataset having 5 predictor variables and a data resolution of 5 minutes is used for this analysis. Forecasting methodologies evaluated include ARIMA, RF, SVM, GLM, GAM and four additional hybrid methods. We will reveal the robust models of GLM and GLM based hybrid methods to deliver consistent forecasts of wind power generation.\",\"PeriodicalId\":392538,\"journal\":{\"name\":\"2021 IEEE Kansas Power and Energy Conference (KPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Kansas Power and Energy Conference (KPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KPEC51835.2021.9446247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Kansas Power and Energy Conference (KPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KPEC51835.2021.9446247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

风力发电预测对电网的安全稳定运行起着至关重要的作用。电网运营商依靠负荷和发电源的短期预测来优化运行,如机组承诺和经济调度。由于可调度性低,可再生能源在发电组合中的比例不断增加,这些预测需要稳定和有效。我们将用不同的预测方法描述我们的绩效研究结果,并将提出混合方法,以便在不同的数据集上提供一致的结果。国家可再生能源实验室(NREL)的风力整合数据集具有5个预测变量和5分钟的数据分辨率,用于此分析。评估的预测方法包括ARIMA、RF、SVM、GLM、GAM和另外四种混合方法。我们将揭示GLM和基于GLM的混合方法的稳健模型,以提供一致的风力发电预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-Term Forecast Analysis on Wind Power Generation Data
The forecasting of Wind power generation plays a critical role in the safe and stable operation of a power grid. Grid operators rely on the short-term forecasts of load and generation sources to optimize operations such as unit commitment and economic dispatch. These forecasts needs to be stable and efficient because of the low dispatchability and increasing percentage of renewable energy sources in the generation mix. We will describe the results of our performance study with different forecasting methodologies and will also propose hybrid methods for delivering consistent results with a varying dataset. The National Renewable Energy Laboratory (NREL) wind integration dataset having 5 predictor variables and a data resolution of 5 minutes is used for this analysis. Forecasting methodologies evaluated include ARIMA, RF, SVM, GLM, GAM and four additional hybrid methods. We will reveal the robust models of GLM and GLM based hybrid methods to deliver consistent forecasts of wind power generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信