{"title":"关于最远线段Voronoi图","authors":"Evanthia Papadopoulou, S. Dey","doi":"10.1142/S0218195913600121","DOIUrl":null,"url":null,"abstract":"The farthest line-segment Voronoi diagram shows properties surprisingly different from the farthest point Voronoi diagram: Voronoi regions may be disconnected and they are not characterized by convex-hull properties. In this paper we introduce the farthest line-segment hull and its Gaussian map, a closed polygonal curve that characterizes the regions of the farthest line-segment Voronoi diagram similarly to the way an ordinary convex hull characterizes the regions of the farthest-point Voronoi diagram. We also derive tighter bounds on the (linear) size of the farthest line-segment Voronoi diagram. With the purpose of unifying construction algorithms for farthest-point and farthest line-segment Voronoi diagrams, we adapt standard techniques for the construction of a convex hull to compute the farthest line-segment hull in O(n logn) or output-sensitive O(n logh) time, where n is the number of segments and h is the size of the hull (number of Voronoi faces). As a result, the farthest line-segment Voronoi diagram can be constructed in output sensitive O(n logh) time.","PeriodicalId":285210,"journal":{"name":"International Journal of Computational Geometry and Applications","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"On the Farthest Line-Segment Voronoi Diagram\",\"authors\":\"Evanthia Papadopoulou, S. Dey\",\"doi\":\"10.1142/S0218195913600121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The farthest line-segment Voronoi diagram shows properties surprisingly different from the farthest point Voronoi diagram: Voronoi regions may be disconnected and they are not characterized by convex-hull properties. In this paper we introduce the farthest line-segment hull and its Gaussian map, a closed polygonal curve that characterizes the regions of the farthest line-segment Voronoi diagram similarly to the way an ordinary convex hull characterizes the regions of the farthest-point Voronoi diagram. We also derive tighter bounds on the (linear) size of the farthest line-segment Voronoi diagram. With the purpose of unifying construction algorithms for farthest-point and farthest line-segment Voronoi diagrams, we adapt standard techniques for the construction of a convex hull to compute the farthest line-segment hull in O(n logn) or output-sensitive O(n logh) time, where n is the number of segments and h is the size of the hull (number of Voronoi faces). As a result, the farthest line-segment Voronoi diagram can be constructed in output sensitive O(n logh) time.\",\"PeriodicalId\":285210,\"journal\":{\"name\":\"International Journal of Computational Geometry and Applications\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218195913600121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218195913600121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The farthest line-segment Voronoi diagram shows properties surprisingly different from the farthest point Voronoi diagram: Voronoi regions may be disconnected and they are not characterized by convex-hull properties. In this paper we introduce the farthest line-segment hull and its Gaussian map, a closed polygonal curve that characterizes the regions of the farthest line-segment Voronoi diagram similarly to the way an ordinary convex hull characterizes the regions of the farthest-point Voronoi diagram. We also derive tighter bounds on the (linear) size of the farthest line-segment Voronoi diagram. With the purpose of unifying construction algorithms for farthest-point and farthest line-segment Voronoi diagrams, we adapt standard techniques for the construction of a convex hull to compute the farthest line-segment hull in O(n logn) or output-sensitive O(n logh) time, where n is the number of segments and h is the size of the hull (number of Voronoi faces). As a result, the farthest line-segment Voronoi diagram can be constructed in output sensitive O(n logh) time.