11.6 100Gb/s-8.3 dbm灵敏度PAM-4光接收机,集成TIA、FFE和直接反馈DFE,采用28nm CMOS

Hao Li, J. Sharma, Chun-Ming Hsu, G. Balamurugan, J. Jaussi
{"title":"11.6 100Gb/s-8.3 dbm灵敏度PAM-4光接收机,集成TIA、FFE和直接反馈DFE,采用28nm CMOS","authors":"Hao Li, J. Sharma, Chun-Ming Hsu, G. Balamurugan, J. Jaussi","doi":"10.1109/ISSCC42613.2021.9365802","DOIUrl":null,"url":null,"abstract":"Several 400G Ethernet standards (e.g. 400G-DR4/FR4) have been developed to address the rapid increase in interconnect BW demand created by data-centric computing [1]. Low-cost100Gb/s PAM-4 optical transceivers are critical to spur their adoption in high volume by data centers. While low-cost integrated silicon-photonic 100Gb/s PAM-4 transmitters have been demonstrated recently, the electronics in current receiver solutions is more disaggregated. They typically employ a standalone BiCMOS TIA 1C followed by a 100G PAM-4 (ADC+DSP)-based SerDes 1C (designed to equalize high-loss electrical channels), which results in higher power dissipation and package cost. To address these drawbacks, we present a 100Gb/s PAM-4 optical RX with a single-chip Solution integrating all 0f the RX electronics in a bulk CMOS process. While standalone l00Gb/s PAM-4 CMOS linear TIAs have been shown in prior work [2], [3], their integration with subsequent SerDes has not yet been demonstrated.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"11.6 A 100Gb/s-8.3dBm-Sensitivity PAM-4 Optical Receiver with Integrated TIA, FFE and Direct-Feedback DFE in 28nm CMOS\",\"authors\":\"Hao Li, J. Sharma, Chun-Ming Hsu, G. Balamurugan, J. Jaussi\",\"doi\":\"10.1109/ISSCC42613.2021.9365802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several 400G Ethernet standards (e.g. 400G-DR4/FR4) have been developed to address the rapid increase in interconnect BW demand created by data-centric computing [1]. Low-cost100Gb/s PAM-4 optical transceivers are critical to spur their adoption in high volume by data centers. While low-cost integrated silicon-photonic 100Gb/s PAM-4 transmitters have been demonstrated recently, the electronics in current receiver solutions is more disaggregated. They typically employ a standalone BiCMOS TIA 1C followed by a 100G PAM-4 (ADC+DSP)-based SerDes 1C (designed to equalize high-loss electrical channels), which results in higher power dissipation and package cost. To address these drawbacks, we present a 100Gb/s PAM-4 optical RX with a single-chip Solution integrating all 0f the RX electronics in a bulk CMOS process. While standalone l00Gb/s PAM-4 CMOS linear TIAs have been shown in prior work [2], [3], their integration with subsequent SerDes has not yet been demonstrated.\",\"PeriodicalId\":371093,\"journal\":{\"name\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Solid- State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC42613.2021.9365802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

已经开发了几种400G以太网标准(例如400G- dr4 /FR4),以解决以数据为中心的计算所产生的互连BW需求的快速增长[1]。低成本的100gb /s PAM-4光收发器对于促进数据中心大量采用它们至关重要。虽然最近已经展示了低成本集成硅光子100Gb/s PAM-4发射机,但目前接收器解决方案中的电子器件更加分散。它们通常采用独立的BiCMOS TIA 1C,然后是基于100G PAM-4 (ADC+DSP)的SerDes 1C(旨在均衡高损耗电通道),这导致更高的功耗和封装成本。为了解决这些缺点,我们提出了一种100Gb/s PAM-4光学RX,其单芯片解决方案将所有RX电子器件集成在批量CMOS工艺中。虽然独立的l00Gb/s PAM-4 CMOS线性TIAs已经在先前的工作中得到展示[2],[3],但它们与后续SerDes的集成尚未得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
11.6 A 100Gb/s-8.3dBm-Sensitivity PAM-4 Optical Receiver with Integrated TIA, FFE and Direct-Feedback DFE in 28nm CMOS
Several 400G Ethernet standards (e.g. 400G-DR4/FR4) have been developed to address the rapid increase in interconnect BW demand created by data-centric computing [1]. Low-cost100Gb/s PAM-4 optical transceivers are critical to spur their adoption in high volume by data centers. While low-cost integrated silicon-photonic 100Gb/s PAM-4 transmitters have been demonstrated recently, the electronics in current receiver solutions is more disaggregated. They typically employ a standalone BiCMOS TIA 1C followed by a 100G PAM-4 (ADC+DSP)-based SerDes 1C (designed to equalize high-loss electrical channels), which results in higher power dissipation and package cost. To address these drawbacks, we present a 100Gb/s PAM-4 optical RX with a single-chip Solution integrating all 0f the RX electronics in a bulk CMOS process. While standalone l00Gb/s PAM-4 CMOS linear TIAs have been shown in prior work [2], [3], their integration with subsequent SerDes has not yet been demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信