Fabian Roos, N. Appenrodt, J. Dickmann, C. Waldschmidt
{"title":"基于啁啾序列的MIMO雷达系统中使用啁啾速率分集的波形复用","authors":"Fabian Roos, N. Appenrodt, J. Dickmann, C. Waldschmidt","doi":"10.1109/RWS.2018.8304946","DOIUrl":null,"url":null,"abstract":"MIMO radar systems create a large virtual aperture to enhance the angular resolution. As a multiplexing scheme often the time-division multiplexing (TDM) procedure is chosen. The drawbacks are a reduced maximal unambiguously detectable Doppler frequency and the need to correct a phase error in angle estimation for relative radial velocities. To overcome these disadvantages a multiplexing scheme is proposed which uses different chirp rates. Every transmitting antenna is active at the same time but can be distinguished due to the different slopes of the frequency ramps.","PeriodicalId":170594,"journal":{"name":"2018 IEEE Radio and Wireless Symposium (RWS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Waveform multiplexing using chirp rate diversity for chirp-sequence based MIMO radar systems\",\"authors\":\"Fabian Roos, N. Appenrodt, J. Dickmann, C. Waldschmidt\",\"doi\":\"10.1109/RWS.2018.8304946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MIMO radar systems create a large virtual aperture to enhance the angular resolution. As a multiplexing scheme often the time-division multiplexing (TDM) procedure is chosen. The drawbacks are a reduced maximal unambiguously detectable Doppler frequency and the need to correct a phase error in angle estimation for relative radial velocities. To overcome these disadvantages a multiplexing scheme is proposed which uses different chirp rates. Every transmitting antenna is active at the same time but can be distinguished due to the different slopes of the frequency ramps.\",\"PeriodicalId\":170594,\"journal\":{\"name\":\"2018 IEEE Radio and Wireless Symposium (RWS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Radio and Wireless Symposium (RWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS.2018.8304946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2018.8304946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Waveform multiplexing using chirp rate diversity for chirp-sequence based MIMO radar systems
MIMO radar systems create a large virtual aperture to enhance the angular resolution. As a multiplexing scheme often the time-division multiplexing (TDM) procedure is chosen. The drawbacks are a reduced maximal unambiguously detectable Doppler frequency and the need to correct a phase error in angle estimation for relative radial velocities. To overcome these disadvantages a multiplexing scheme is proposed which uses different chirp rates. Every transmitting antenna is active at the same time but can be distinguished due to the different slopes of the frequency ramps.