基于ELECTRA和智能人脸图像处理的命名实体识别研究

Yihui Fu, Fanliang Bu
{"title":"基于ELECTRA和智能人脸图像处理的命名实体识别研究","authors":"Yihui Fu, Fanliang Bu","doi":"10.1109/ICESIT53460.2021.9696907","DOIUrl":null,"url":null,"abstract":"Aiming at the problem that the corpus of drug-related fields is not rich and the relevant information of drug-related personnel is insufficient, this paper constructs a 600,000-word-scale drug-related text data set, and proposes a named entity recognition method for drug-related personnel based on ELECTRA-BiLSTM-CRF. First input the labeled text into the ELECTRA pre-training language model to obtain a word vector with better semantic representation; then input the trained word vector into the bidirectional long short-term memory (BiLSTM) network to extract the context feature; finally, the best predicted label sequence is obtained through the conditional random field(CRF). The performance of this model was evaluated on the drug-related text data set. The experimental results showed that the F1 value of the ELECTRA-BiLSTM-CRF model reached 94%, which was better than the BERT-BiLSTM-CRF, BERT-CRF, and BiLSTM-CRF models, which proved this model has a good effect on the named entity recognition of drug-related personnel.","PeriodicalId":164745,"journal":{"name":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Named Entity Recognition Based on ELECTRA and Intelligent Face Image Processing\",\"authors\":\"Yihui Fu, Fanliang Bu\",\"doi\":\"10.1109/ICESIT53460.2021.9696907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem that the corpus of drug-related fields is not rich and the relevant information of drug-related personnel is insufficient, this paper constructs a 600,000-word-scale drug-related text data set, and proposes a named entity recognition method for drug-related personnel based on ELECTRA-BiLSTM-CRF. First input the labeled text into the ELECTRA pre-training language model to obtain a word vector with better semantic representation; then input the trained word vector into the bidirectional long short-term memory (BiLSTM) network to extract the context feature; finally, the best predicted label sequence is obtained through the conditional random field(CRF). The performance of this model was evaluated on the drug-related text data set. The experimental results showed that the F1 value of the ELECTRA-BiLSTM-CRF model reached 94%, which was better than the BERT-BiLSTM-CRF, BERT-CRF, and BiLSTM-CRF models, which proved this model has a good effect on the named entity recognition of drug-related personnel.\",\"PeriodicalId\":164745,\"journal\":{\"name\":\"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESIT53460.2021.9696907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESIT53460.2021.9696907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对涉毒领域语料库不丰富、涉毒人员相关信息不足的问题,本文构建了一个60万字规模的涉毒文本数据集,提出了一种基于ELECTRA-BiLSTM-CRF的涉毒人员命名实体识别方法。首先将标记好的文本输入到ELECTRA预训练语言模型中,得到语义表示更好的词向量;然后将训练好的词向量输入到双向长短期记忆(BiLSTM)网络中提取上下文特征;最后,通过条件随机场(CRF)得到最佳预测标签序列。该模型的性能在药物相关文本数据集上进行了评估。实验结果表明,ELECTRA-BiLSTM-CRF模型的F1值达到94%,优于BERT-BiLSTM-CRF、BERT-CRF、BiLSTM-CRF模型,证明该模型对药物相关人员的命名实体识别有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Named Entity Recognition Based on ELECTRA and Intelligent Face Image Processing
Aiming at the problem that the corpus of drug-related fields is not rich and the relevant information of drug-related personnel is insufficient, this paper constructs a 600,000-word-scale drug-related text data set, and proposes a named entity recognition method for drug-related personnel based on ELECTRA-BiLSTM-CRF. First input the labeled text into the ELECTRA pre-training language model to obtain a word vector with better semantic representation; then input the trained word vector into the bidirectional long short-term memory (BiLSTM) network to extract the context feature; finally, the best predicted label sequence is obtained through the conditional random field(CRF). The performance of this model was evaluated on the drug-related text data set. The experimental results showed that the F1 value of the ELECTRA-BiLSTM-CRF model reached 94%, which was better than the BERT-BiLSTM-CRF, BERT-CRF, and BiLSTM-CRF models, which proved this model has a good effect on the named entity recognition of drug-related personnel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信