{"title":"基于ELECTRA和智能人脸图像处理的命名实体识别研究","authors":"Yihui Fu, Fanliang Bu","doi":"10.1109/ICESIT53460.2021.9696907","DOIUrl":null,"url":null,"abstract":"Aiming at the problem that the corpus of drug-related fields is not rich and the relevant information of drug-related personnel is insufficient, this paper constructs a 600,000-word-scale drug-related text data set, and proposes a named entity recognition method for drug-related personnel based on ELECTRA-BiLSTM-CRF. First input the labeled text into the ELECTRA pre-training language model to obtain a word vector with better semantic representation; then input the trained word vector into the bidirectional long short-term memory (BiLSTM) network to extract the context feature; finally, the best predicted label sequence is obtained through the conditional random field(CRF). The performance of this model was evaluated on the drug-related text data set. The experimental results showed that the F1 value of the ELECTRA-BiLSTM-CRF model reached 94%, which was better than the BERT-BiLSTM-CRF, BERT-CRF, and BiLSTM-CRF models, which proved this model has a good effect on the named entity recognition of drug-related personnel.","PeriodicalId":164745,"journal":{"name":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Named Entity Recognition Based on ELECTRA and Intelligent Face Image Processing\",\"authors\":\"Yihui Fu, Fanliang Bu\",\"doi\":\"10.1109/ICESIT53460.2021.9696907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem that the corpus of drug-related fields is not rich and the relevant information of drug-related personnel is insufficient, this paper constructs a 600,000-word-scale drug-related text data set, and proposes a named entity recognition method for drug-related personnel based on ELECTRA-BiLSTM-CRF. First input the labeled text into the ELECTRA pre-training language model to obtain a word vector with better semantic representation; then input the trained word vector into the bidirectional long short-term memory (BiLSTM) network to extract the context feature; finally, the best predicted label sequence is obtained through the conditional random field(CRF). The performance of this model was evaluated on the drug-related text data set. The experimental results showed that the F1 value of the ELECTRA-BiLSTM-CRF model reached 94%, which was better than the BERT-BiLSTM-CRF, BERT-CRF, and BiLSTM-CRF models, which proved this model has a good effect on the named entity recognition of drug-related personnel.\",\"PeriodicalId\":164745,\"journal\":{\"name\":\"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESIT53460.2021.9696907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESIT53460.2021.9696907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research on Named Entity Recognition Based on ELECTRA and Intelligent Face Image Processing
Aiming at the problem that the corpus of drug-related fields is not rich and the relevant information of drug-related personnel is insufficient, this paper constructs a 600,000-word-scale drug-related text data set, and proposes a named entity recognition method for drug-related personnel based on ELECTRA-BiLSTM-CRF. First input the labeled text into the ELECTRA pre-training language model to obtain a word vector with better semantic representation; then input the trained word vector into the bidirectional long short-term memory (BiLSTM) network to extract the context feature; finally, the best predicted label sequence is obtained through the conditional random field(CRF). The performance of this model was evaluated on the drug-related text data set. The experimental results showed that the F1 value of the ELECTRA-BiLSTM-CRF model reached 94%, which was better than the BERT-BiLSTM-CRF, BERT-CRF, and BiLSTM-CRF models, which proved this model has a good effect on the named entity recognition of drug-related personnel.