基于异构图的音乐推荐特征自动生成

Chun Guo, Xiaozhong Liu
{"title":"基于异构图的音乐推荐特征自动生成","authors":"Chun Guo, Xiaozhong Liu","doi":"10.1145/2766462.2767808","DOIUrl":null,"url":null,"abstract":"Online music streaming services (MSS) experienced exponential growth over the past decade. The giant MSS providers not only built massive music collection with metadata, they also accumulated large amount of heterogeneous data generated from users, e.g. listening history, comment, bookmark, and user generated playlist. While various kinds of user data can potentially be used to enhance the music recommendation performance, most existing studies only focused on audio content features and collaborative filtering approaches based on simple user listening history or music rating. In this paper, we propose a novel approach to solve the music recommendation problem by means of heterogeneous graph mining. Meta-path based features are automatically generated from a content-rich heterogeneous graph schema with 6 types of nodes and 16 types of relations. Meanwhile, we use learning-to-rank approach to integrate different features for music recommendation. Experiment results show that the automatically generated graphical features significantly (p<0.0001) enhance state-of-the-art collaborative filtering algorithm.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Automatic Feature Generation on Heterogeneous Graph for Music Recommendation\",\"authors\":\"Chun Guo, Xiaozhong Liu\",\"doi\":\"10.1145/2766462.2767808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online music streaming services (MSS) experienced exponential growth over the past decade. The giant MSS providers not only built massive music collection with metadata, they also accumulated large amount of heterogeneous data generated from users, e.g. listening history, comment, bookmark, and user generated playlist. While various kinds of user data can potentially be used to enhance the music recommendation performance, most existing studies only focused on audio content features and collaborative filtering approaches based on simple user listening history or music rating. In this paper, we propose a novel approach to solve the music recommendation problem by means of heterogeneous graph mining. Meta-path based features are automatically generated from a content-rich heterogeneous graph schema with 6 types of nodes and 16 types of relations. Meanwhile, we use learning-to-rank approach to integrate different features for music recommendation. Experiment results show that the automatically generated graphical features significantly (p<0.0001) enhance state-of-the-art collaborative filtering algorithm.\",\"PeriodicalId\":297035,\"journal\":{\"name\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2766462.2767808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在线音乐流媒体服务(MSS)在过去十年中经历了指数级增长。大型MSS提供商不仅用元数据构建了海量的音乐收藏,还积累了大量来自用户的异构数据,如收听历史、评论、书签和用户生成的播放列表。虽然各种各样的用户数据可以用来增强音乐推荐的性能,但大多数现有的研究只关注音频内容特征和基于简单的用户收听历史或音乐评级的协同过滤方法。本文提出了一种基于异构图挖掘的音乐推荐方法。基于元路径的特性是由具有6种节点类型和16种关系类型的内容丰富的异构图模式自动生成的。同时,我们使用学习排序的方法来整合不同的特征进行音乐推荐。实验结果表明,自动生成的图形特征显著(p<0.0001)增强了最先进的协同过滤算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Feature Generation on Heterogeneous Graph for Music Recommendation
Online music streaming services (MSS) experienced exponential growth over the past decade. The giant MSS providers not only built massive music collection with metadata, they also accumulated large amount of heterogeneous data generated from users, e.g. listening history, comment, bookmark, and user generated playlist. While various kinds of user data can potentially be used to enhance the music recommendation performance, most existing studies only focused on audio content features and collaborative filtering approaches based on simple user listening history or music rating. In this paper, we propose a novel approach to solve the music recommendation problem by means of heterogeneous graph mining. Meta-path based features are automatically generated from a content-rich heterogeneous graph schema with 6 types of nodes and 16 types of relations. Meanwhile, we use learning-to-rank approach to integrate different features for music recommendation. Experiment results show that the automatically generated graphical features significantly (p<0.0001) enhance state-of-the-art collaborative filtering algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信