信息结构空间中基于生长神经网络的机器人伙伴行为模式学习

T. Obo, N. Kubota
{"title":"信息结构空间中基于生长神经网络的机器人伙伴行为模式学习","authors":"T. Obo, N. Kubota","doi":"10.1109/RIISS.2014.7009175","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on human behavior estimation for human-robot interaction. Human behavior recognition is one of the most important techniques, because bodily expressions convey important and effective information for robots. This paper proposes a learning structure composed of two learning modules for feature extraction and contextual relation modeling, using Growing Neural Gas (GNG) and Spiking Neural Network (SNN). GNG is applied to the feature extraction of human behavior, and SNN is used to associate the features with verbal labels that robots can get through human-robot interaction. Furthermore, we show an experimental result, and discuss effectiveness of the proposed method.","PeriodicalId":270157,"journal":{"name":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","volume":"18 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior pattern learning for robot partner based on growing neural networks in informationally structured space\",\"authors\":\"T. Obo, N. Kubota\",\"doi\":\"10.1109/RIISS.2014.7009175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on human behavior estimation for human-robot interaction. Human behavior recognition is one of the most important techniques, because bodily expressions convey important and effective information for robots. This paper proposes a learning structure composed of two learning modules for feature extraction and contextual relation modeling, using Growing Neural Gas (GNG) and Spiking Neural Network (SNN). GNG is applied to the feature extraction of human behavior, and SNN is used to associate the features with verbal labels that robots can get through human-robot interaction. Furthermore, we show an experimental result, and discuss effectiveness of the proposed method.\",\"PeriodicalId\":270157,\"journal\":{\"name\":\"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)\",\"volume\":\"18 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIISS.2014.7009175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIISS.2014.7009175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究人机交互中人类行为的估计问题。人类行为识别是最重要的技术之一,因为身体表情传递了重要而有效的信息。本文提出了一种基于生长神经气体(GNG)和峰值神经网络(SNN)的特征提取和上下文关系建模两个学习模块组成的学习结构。GNG用于人类行为的特征提取,SNN用于将特征与机器人通过人机交互获得的语言标签相关联。最后给出了实验结果,并讨论了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavior pattern learning for robot partner based on growing neural networks in informationally structured space
In this paper, we focus on human behavior estimation for human-robot interaction. Human behavior recognition is one of the most important techniques, because bodily expressions convey important and effective information for robots. This paper proposes a learning structure composed of two learning modules for feature extraction and contextual relation modeling, using Growing Neural Gas (GNG) and Spiking Neural Network (SNN). GNG is applied to the feature extraction of human behavior, and SNN is used to associate the features with verbal labels that robots can get through human-robot interaction. Furthermore, we show an experimental result, and discuss effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信