多变量特殊函数概述

T. Koornwinder, J. Stokman
{"title":"多变量特殊函数概述","authors":"T. Koornwinder, J. Stokman","doi":"10.1017/9780511777165.002","DOIUrl":null,"url":null,"abstract":"The theory of one-variable (ordinary) hypergeometric and basic hypergeometric series goes back to work of Euler, Gauss and Jacobi. The theory of elliptic hypergeometric series is of a much more recent vintage [20]. The three theories deal with the study of series ∑ k≥0 ck with f (k) := ck+1/ck a rational function in k (hypergeometric theory), a rational function in qk (basic hypergeometric theory), or a doubly periodic meromorphic function in k (elliptic hypergeometric theory, see [21, Ch. 11] for an overview). Examples of elementary functions admitting hypergeometric and basic hypergeometric series representations are","PeriodicalId":356498,"journal":{"name":"Encyclopedia of Special Functions: The Askey-Bateman Project","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General Overview of Multivariable Special Functions\",\"authors\":\"T. Koornwinder, J. Stokman\",\"doi\":\"10.1017/9780511777165.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of one-variable (ordinary) hypergeometric and basic hypergeometric series goes back to work of Euler, Gauss and Jacobi. The theory of elliptic hypergeometric series is of a much more recent vintage [20]. The three theories deal with the study of series ∑ k≥0 ck with f (k) := ck+1/ck a rational function in k (hypergeometric theory), a rational function in qk (basic hypergeometric theory), or a doubly periodic meromorphic function in k (elliptic hypergeometric theory, see [21, Ch. 11] for an overview). Examples of elementary functions admitting hypergeometric and basic hypergeometric series representations are\",\"PeriodicalId\":356498,\"journal\":{\"name\":\"Encyclopedia of Special Functions: The Askey-Bateman Project\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Special Functions: The Askey-Bateman Project\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9780511777165.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Special Functions: The Askey-Bateman Project","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9780511777165.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一元(普通)超几何级数和基本超几何级数的理论可以追溯到欧拉、高斯和雅可比的工作。椭圆型超几何级数的理论是最近才出现的[20]。这三种理论处理级数∑k≥0 ck与f (k)的研究:= ck+1/ck k中的有理函数(超几何理论),qk中的有理函数(基本超几何理论),或k中的双周期亚纯函数(椭圆超几何理论,参见[21,第11章]的概述)。给出了允许超几何级数表示和基本超几何级数表示的初等函数的例子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Overview of Multivariable Special Functions
The theory of one-variable (ordinary) hypergeometric and basic hypergeometric series goes back to work of Euler, Gauss and Jacobi. The theory of elliptic hypergeometric series is of a much more recent vintage [20]. The three theories deal with the study of series ∑ k≥0 ck with f (k) := ck+1/ck a rational function in k (hypergeometric theory), a rational function in qk (basic hypergeometric theory), or a doubly periodic meromorphic function in k (elliptic hypergeometric theory, see [21, Ch. 11] for an overview). Examples of elementary functions admitting hypergeometric and basic hypergeometric series representations are
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信