刚性初值问题两点对角隐式块反微分公式扩展超类

H. Musa, H. Iliyasu
{"title":"刚性初值问题两点对角隐式块反微分公式扩展超类","authors":"H. Musa, H. Iliyasu","doi":"10.59568/jasic-2022-3-2-01","DOIUrl":null,"url":null,"abstract":"In this paper, a diagonal form of the extended super class of block backward differentiation formula is derived. The method is fully implicit and approximates two solution values at a time. By varying a parameter 𝜌𝜖 (–1,1) in the formula, different sets of formulae can be generated. Analysis of the method indicated that the method is both zero and A–stable, hence, suitable for solving stiff initial value problems. Comparison of the method with some existing algorithms showed its advantage in terms of accuracy over some methods.","PeriodicalId":167914,"journal":{"name":"Journal of Applied Science, Information and Computing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two–Point Diagonally Implicit Extended Super Class of Block Backward Differentiation Formula for Stiff Initial Value Problems\",\"authors\":\"H. Musa, H. Iliyasu\",\"doi\":\"10.59568/jasic-2022-3-2-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a diagonal form of the extended super class of block backward differentiation formula is derived. The method is fully implicit and approximates two solution values at a time. By varying a parameter 𝜌𝜖 (–1,1) in the formula, different sets of formulae can be generated. Analysis of the method indicated that the method is both zero and A–stable, hence, suitable for solving stiff initial value problems. Comparison of the method with some existing algorithms showed its advantage in terms of accuracy over some methods.\",\"PeriodicalId\":167914,\"journal\":{\"name\":\"Journal of Applied Science, Information and Computing\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Science, Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59568/jasic-2022-3-2-01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Science, Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59568/jasic-2022-3-2-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文导出了块反微分公式扩展超类的对角形式。该方法是完全隐式的,一次逼近两个解值。通过改变公式中的一个参数𝜌(- 1,1),可以生成不同的公式集。分析表明,该方法是零稳定和a稳定的,适合于求解刚性初值问题。与现有算法的比较表明,该方法在精度上优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two–Point Diagonally Implicit Extended Super Class of Block Backward Differentiation Formula for Stiff Initial Value Problems
In this paper, a diagonal form of the extended super class of block backward differentiation formula is derived. The method is fully implicit and approximates two solution values at a time. By varying a parameter 𝜌𝜖 (–1,1) in the formula, different sets of formulae can be generated. Analysis of the method indicated that the method is both zero and A–stable, hence, suitable for solving stiff initial value problems. Comparison of the method with some existing algorithms showed its advantage in terms of accuracy over some methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信