{"title":"FH-SCMA的最佳跳频模式","authors":"S. Maric, L. Velimirović","doi":"10.1109/5GWF.2018.8516980","DOIUrl":null,"url":null,"abstract":"Non-orthogonal multiple access (NOMA) techniques are an effective tool for increasing the user capacity in 5G networks. NOMA employs different interference cancellation strategies to improve the performance. This is necessary since the users occupy a same resource in any given time and the underlying user codes cannot achieve full orthogonality due to their short length compared to the number of users. In Sparse Code Multiple Access, Frequency Hopping (FH) can be used to randomize interference but the patterns need to be carefully designed in order to achieve effective randomization. In the paper, we first give the algebraic construction of optimal FH patterns when it comes to randomization, and then using simulations we establish the performance improvement when our patterns are compared with random pattern assignment.","PeriodicalId":440445,"journal":{"name":"2018 IEEE 5G World Forum (5GWF)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Frequency Hopping Patterns for FH-SCMA\",\"authors\":\"S. Maric, L. Velimirović\",\"doi\":\"10.1109/5GWF.2018.8516980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-orthogonal multiple access (NOMA) techniques are an effective tool for increasing the user capacity in 5G networks. NOMA employs different interference cancellation strategies to improve the performance. This is necessary since the users occupy a same resource in any given time and the underlying user codes cannot achieve full orthogonality due to their short length compared to the number of users. In Sparse Code Multiple Access, Frequency Hopping (FH) can be used to randomize interference but the patterns need to be carefully designed in order to achieve effective randomization. In the paper, we first give the algebraic construction of optimal FH patterns when it comes to randomization, and then using simulations we establish the performance improvement when our patterns are compared with random pattern assignment.\",\"PeriodicalId\":440445,\"journal\":{\"name\":\"2018 IEEE 5G World Forum (5GWF)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 5G World Forum (5GWF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/5GWF.2018.8516980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5G World Forum (5GWF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/5GWF.2018.8516980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-orthogonal multiple access (NOMA) techniques are an effective tool for increasing the user capacity in 5G networks. NOMA employs different interference cancellation strategies to improve the performance. This is necessary since the users occupy a same resource in any given time and the underlying user codes cannot achieve full orthogonality due to their short length compared to the number of users. In Sparse Code Multiple Access, Frequency Hopping (FH) can be used to randomize interference but the patterns need to be carefully designed in order to achieve effective randomization. In the paper, we first give the algebraic construction of optimal FH patterns when it comes to randomization, and then using simulations we establish the performance improvement when our patterns are compared with random pattern assignment.