基于OpenCV的机房人员控制研究

Wenzhi Wu, Ying Wei
{"title":"基于OpenCV的机房人员控制研究","authors":"Wenzhi Wu, Ying Wei","doi":"10.1109/ISCTIS51085.2021.00009","DOIUrl":null,"url":null,"abstract":"As one of the commonly used techniques of identity authentication, face recognition has great application value in computer room monitoring. Taking Raspberry Pi as the system carrier, the project adopts OpenCV image recognition library Haar feature and Face Recognition Library for the detection and recognition of the personnel entering the computer room, classifies the detection results, and optimizes the results by using the error optimization algorithm. As indicated by the final results, the OpenCV-based computer room personnel control system has an accuracy rate of 99.09%, which can be applied in actual computer room inspection system.","PeriodicalId":403102,"journal":{"name":"2021 International Symposium on Computer Technology and Information Science (ISCTIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Control of Computer Room Personnel Based on OpenCV\",\"authors\":\"Wenzhi Wu, Ying Wei\",\"doi\":\"10.1109/ISCTIS51085.2021.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the commonly used techniques of identity authentication, face recognition has great application value in computer room monitoring. Taking Raspberry Pi as the system carrier, the project adopts OpenCV image recognition library Haar feature and Face Recognition Library for the detection and recognition of the personnel entering the computer room, classifies the detection results, and optimizes the results by using the error optimization algorithm. As indicated by the final results, the OpenCV-based computer room personnel control system has an accuracy rate of 99.09%, which can be applied in actual computer room inspection system.\",\"PeriodicalId\":403102,\"journal\":{\"name\":\"2021 International Symposium on Computer Technology and Information Science (ISCTIS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Computer Technology and Information Science (ISCTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCTIS51085.2021.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Computer Technology and Information Science (ISCTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCTIS51085.2021.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人脸识别作为一种常用的身份认证技术,在机房监控中具有重要的应用价值。本项目以树莓派为系统载体,采用OpenCV图像识别库Haar feature和人脸识别库对进入机房的人员进行检测识别,对检测结果进行分类,并采用误差优化算法对结果进行优化。最终结果表明,基于opencv的机房人员控制系统准确率达到99.09%,可应用于实际机房巡检系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Control of Computer Room Personnel Based on OpenCV
As one of the commonly used techniques of identity authentication, face recognition has great application value in computer room monitoring. Taking Raspberry Pi as the system carrier, the project adopts OpenCV image recognition library Haar feature and Face Recognition Library for the detection and recognition of the personnel entering the computer room, classifies the detection results, and optimizes the results by using the error optimization algorithm. As indicated by the final results, the OpenCV-based computer room personnel control system has an accuracy rate of 99.09%, which can be applied in actual computer room inspection system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信