基于权重的正则化方法提高图像分类的鲁棒性

Hao Yang, Min Wang, Zhengfei Yu, Yun Zhou
{"title":"基于权重的正则化方法提高图像分类的鲁棒性","authors":"Hao Yang, Min Wang, Zhengfei Yu, Yun Zhou","doi":"10.1109/ICME55011.2023.00305","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNNs) are known to be vulnerable to adversarial attacks. Recently, Stochastic Neural Networks (SNNs) have been proposed to enhance adversarial robustness by injecting uncertainty into the models. However, existing SNNs often inspired by intuition and rely on adversarial training, which is computationally costly. To address this issue, we propose a novel SNN called the Weight-based Stochastic Neural Network (WB-SNN), which is based on optimizing an error upper bound of adversarial robustness from the perspective of weight distribution. To the best of our knowledge, we are the first to propose a theoretically guaranteed weight-based stochastic neural network without relying on adversarial training. In comparison to normal adversarial training, our method saves about three times the computation cost. Extensive experiments on various datasets, networks, and adversarial attacks have demonstrated the effectiveness of the proposed method.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight-based Regularization for Improving Robustness in Image Classification\",\"authors\":\"Hao Yang, Min Wang, Zhengfei Yu, Yun Zhou\",\"doi\":\"10.1109/ICME55011.2023.00305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Networks (DNNs) are known to be vulnerable to adversarial attacks. Recently, Stochastic Neural Networks (SNNs) have been proposed to enhance adversarial robustness by injecting uncertainty into the models. However, existing SNNs often inspired by intuition and rely on adversarial training, which is computationally costly. To address this issue, we propose a novel SNN called the Weight-based Stochastic Neural Network (WB-SNN), which is based on optimizing an error upper bound of adversarial robustness from the perspective of weight distribution. To the best of our knowledge, we are the first to propose a theoretically guaranteed weight-based stochastic neural network without relying on adversarial training. In comparison to normal adversarial training, our method saves about three times the computation cost. Extensive experiments on various datasets, networks, and adversarial attacks have demonstrated the effectiveness of the proposed method.\",\"PeriodicalId\":321830,\"journal\":{\"name\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME55011.2023.00305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,深度神经网络(dnn)容易受到对抗性攻击。最近,随机神经网络(SNNs)被提出通过向模型中注入不确定性来增强对抗鲁棒性。然而,现有的snn通常受直觉启发,依赖于对抗训练,这在计算上是昂贵的。为了解决这一问题,我们提出了一种新的基于权重的随机神经网络(WB-SNN),该网络从权重分布的角度优化了对抗鲁棒性的误差上界。据我们所知,我们是第一个提出一个理论上有保证的基于权重的随机神经网络,而不依赖于对抗性训练。与常规的对抗性训练相比,我们的方法节省了大约3倍的计算量。在各种数据集、网络和对抗性攻击上进行的大量实验证明了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weight-based Regularization for Improving Robustness in Image Classification
Deep Neural Networks (DNNs) are known to be vulnerable to adversarial attacks. Recently, Stochastic Neural Networks (SNNs) have been proposed to enhance adversarial robustness by injecting uncertainty into the models. However, existing SNNs often inspired by intuition and rely on adversarial training, which is computationally costly. To address this issue, we propose a novel SNN called the Weight-based Stochastic Neural Network (WB-SNN), which is based on optimizing an error upper bound of adversarial robustness from the perspective of weight distribution. To the best of our knowledge, we are the first to propose a theoretically guaranteed weight-based stochastic neural network without relying on adversarial training. In comparison to normal adversarial training, our method saves about three times the computation cost. Extensive experiments on various datasets, networks, and adversarial attacks have demonstrated the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信