量子聚类的改进

Mehdi Nabatian, J. Tanha, A. R. Ebrahimzadeh, Negin Samadi, Nazila Razzaghi-Asl
{"title":"量子聚类的改进","authors":"Mehdi Nabatian, J. Tanha, A. R. Ebrahimzadeh, Negin Samadi, Nazila Razzaghi-Asl","doi":"10.1109/ICSPIS54653.2021.9729349","DOIUrl":null,"url":null,"abstract":"Data and patterns are the most important indicators in the world of information. Clustering is one of the best ways to enter the big data world. The main ability of the clustering is to enter the data space and recognize the data structure. Quantum Clustering (QC) is a innovative clustering method that aims to detect the potential components of a data set, based on physical concepts. QC is a new heuristic formulating procedure based on the Schrödinger equation. The main assumption in QC is that the number and location of minimums Schrödinger potential(V) will assign the number and centers of the clusters. In standard QC, first step is to construct the wave function using the Parzen window symmetric estimator, and the next step is to solve the Schrödinger equation for this wave function. These hypotheses lead the clustering problem to solve the Schrödinger equation for an asymmetric harmonic oscillator. In this paper, we improve the results of QC clustering by considering the asymmetric Parzen estimator and solving the Schrödinger equation for the asymmetric harmonic oscillator.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improvement on quantum clustering\",\"authors\":\"Mehdi Nabatian, J. Tanha, A. R. Ebrahimzadeh, Negin Samadi, Nazila Razzaghi-Asl\",\"doi\":\"10.1109/ICSPIS54653.2021.9729349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data and patterns are the most important indicators in the world of information. Clustering is one of the best ways to enter the big data world. The main ability of the clustering is to enter the data space and recognize the data structure. Quantum Clustering (QC) is a innovative clustering method that aims to detect the potential components of a data set, based on physical concepts. QC is a new heuristic formulating procedure based on the Schrödinger equation. The main assumption in QC is that the number and location of minimums Schrödinger potential(V) will assign the number and centers of the clusters. In standard QC, first step is to construct the wave function using the Parzen window symmetric estimator, and the next step is to solve the Schrödinger equation for this wave function. These hypotheses lead the clustering problem to solve the Schrödinger equation for an asymmetric harmonic oscillator. In this paper, we improve the results of QC clustering by considering the asymmetric Parzen estimator and solving the Schrödinger equation for the asymmetric harmonic oscillator.\",\"PeriodicalId\":286966,\"journal\":{\"name\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS54653.2021.9729349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据和模式是信息世界中最重要的指标。集群是进入大数据世界的最佳方式之一。聚类的主要能力是进入数据空间和识别数据结构。量子聚类(QC)是一种创新的聚类方法,旨在基于物理概念检测数据集的潜在组成部分。QC是一种基于Schrödinger方程的新型启发式制定程序。QC中的主要假设是最小值Schrödinger电位(V)的数量和位置将分配集群的数量和中心。在标准QC中,第一步是使用Parzen窗口对称估计器构造波函数,下一步是求解该波函数的Schrödinger方程。这些假设导致聚类问题求解不对称谐振子的Schrödinger方程。本文通过考虑非对称Parzen估计量和求解非对称谐振子的Schrödinger方程,改进了QC聚类的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improvement on quantum clustering
Data and patterns are the most important indicators in the world of information. Clustering is one of the best ways to enter the big data world. The main ability of the clustering is to enter the data space and recognize the data structure. Quantum Clustering (QC) is a innovative clustering method that aims to detect the potential components of a data set, based on physical concepts. QC is a new heuristic formulating procedure based on the Schrödinger equation. The main assumption in QC is that the number and location of minimums Schrödinger potential(V) will assign the number and centers of the clusters. In standard QC, first step is to construct the wave function using the Parzen window symmetric estimator, and the next step is to solve the Schrödinger equation for this wave function. These hypotheses lead the clustering problem to solve the Schrödinger equation for an asymmetric harmonic oscillator. In this paper, we improve the results of QC clustering by considering the asymmetric Parzen estimator and solving the Schrödinger equation for the asymmetric harmonic oscillator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信