野外照片的生物识别动物数据库:野生斑马个体的识别

M. Lahiri, Chayant Tantipathananandh, Rosemary Warungu, D. Rubenstein, T. Berger-Wolf
{"title":"野外照片的生物识别动物数据库:野生斑马个体的识别","authors":"M. Lahiri, Chayant Tantipathananandh, Rosemary Warungu, D. Rubenstein, T. Berger-Wolf","doi":"10.1145/1991996.1992002","DOIUrl":null,"url":null,"abstract":"We describe an algorithmic and experimental approach to a fundamental problem in field ecology: computer-assisted individual animal identification. We use a database of noisy photographs taken in the wild to build a biometric database of individual animals differentiated by their coat markings. A new image of an unknown animal can then be queried by its coat markings against the database to determine if the animal has been observed and identified before. Our algorithm, called StripeCodes, efficiently extracts simple image features and uses a dynamic programming algorithm to compare images. We test its accuracy against two different classes of methods: Eigenface, which is based on algebraic techniques, and matching multi-scale histograms of differential image features, an approach from signal processing. StripeCodes performs better than all competing methods for our dataset, and scales well with database size.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Biometric animal databases from field photographs: identification of individual zebra in the wild\",\"authors\":\"M. Lahiri, Chayant Tantipathananandh, Rosemary Warungu, D. Rubenstein, T. Berger-Wolf\",\"doi\":\"10.1145/1991996.1992002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an algorithmic and experimental approach to a fundamental problem in field ecology: computer-assisted individual animal identification. We use a database of noisy photographs taken in the wild to build a biometric database of individual animals differentiated by their coat markings. A new image of an unknown animal can then be queried by its coat markings against the database to determine if the animal has been observed and identified before. Our algorithm, called StripeCodes, efficiently extracts simple image features and uses a dynamic programming algorithm to compare images. We test its accuracy against two different classes of methods: Eigenface, which is based on algebraic techniques, and matching multi-scale histograms of differential image features, an approach from signal processing. StripeCodes performs better than all competing methods for our dataset, and scales well with database size.\",\"PeriodicalId\":390933,\"journal\":{\"name\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1991996.1992002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

摘要

我们描述了一种算法和实验方法来解决野外生态学中的一个基本问题:计算机辅助个体动物识别。我们使用一个在野外拍摄的嘈杂照片数据库来建立一个生物特征数据库,根据它们的皮毛标记来区分个体动物。未知动物的新图像可以通过其皮毛标记与数据库进行查询,以确定该动物之前是否被观察和识别过。我们的算法,称为StripeCodes,有效地提取简单的图像特征,并使用动态规划算法来比较图像。我们针对两种不同类型的方法测试了它的准确性:基于代数技术的特征脸和匹配差分图像特征的多尺度直方图,这是一种来自信号处理的方法。对于我们的数据集,StripeCodes的性能优于所有竞争方法,并且可以很好地随数据库大小进行扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biometric animal databases from field photographs: identification of individual zebra in the wild
We describe an algorithmic and experimental approach to a fundamental problem in field ecology: computer-assisted individual animal identification. We use a database of noisy photographs taken in the wild to build a biometric database of individual animals differentiated by their coat markings. A new image of an unknown animal can then be queried by its coat markings against the database to determine if the animal has been observed and identified before. Our algorithm, called StripeCodes, efficiently extracts simple image features and uses a dynamic programming algorithm to compare images. We test its accuracy against two different classes of methods: Eigenface, which is based on algebraic techniques, and matching multi-scale histograms of differential image features, an approach from signal processing. StripeCodes performs better than all competing methods for our dataset, and scales well with database size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信