探索变形金刚和时间滞后特征,预测情绪随时间的变化

John M. Culnan, Damian Romero Diaz, S. Bethard
{"title":"探索变形金刚和时间滞后特征,预测情绪随时间的变化","authors":"John M. Culnan, Damian Romero Diaz, S. Bethard","doi":"10.18653/v1/2022.clpsych-1.21","DOIUrl":null,"url":null,"abstract":"This paper presents transformer-based models created for the CLPsych 2022 shared task. Using posts from Reddit users over a period of time, we aim to predict changes in mood from post to post. We test models that preserve timeline information through explicit ordering of posts as well as those that do not order posts but preserve features on the length of time between a user’s posts. We find that a model with temporal information may provide slight benefits over the same model without such information, although a RoBERTa transformer model provides enough information to make similar predictions without custom-encoded time information.","PeriodicalId":107109,"journal":{"name":"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploring transformers and time lag features for predicting changes in mood over time\",\"authors\":\"John M. Culnan, Damian Romero Diaz, S. Bethard\",\"doi\":\"10.18653/v1/2022.clpsych-1.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents transformer-based models created for the CLPsych 2022 shared task. Using posts from Reddit users over a period of time, we aim to predict changes in mood from post to post. We test models that preserve timeline information through explicit ordering of posts as well as those that do not order posts but preserve features on the length of time between a user’s posts. We find that a model with temporal information may provide slight benefits over the same model without such information, although a RoBERTa transformer model provides enough information to make similar predictions without custom-encoded time information.\",\"PeriodicalId\":107109,\"journal\":{\"name\":\"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.clpsych-1.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.clpsych-1.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了为CLPsych 2022共享任务创建的基于变压器的模型。利用Reddit用户在一段时间内发布的帖子,我们的目标是预测每个帖子的情绪变化。我们测试了通过显式帖子排序来保留时间轴信息的模型,以及那些不排序帖子但保留用户帖子之间时间长度特征的模型。我们发现,具有时间信息的模型可能比没有此类信息的相同模型提供轻微的好处,尽管RoBERTa转换器模型提供了足够的信息,可以在没有自定义编码的时间信息的情况下进行类似的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring transformers and time lag features for predicting changes in mood over time
This paper presents transformer-based models created for the CLPsych 2022 shared task. Using posts from Reddit users over a period of time, we aim to predict changes in mood from post to post. We test models that preserve timeline information through explicit ordering of posts as well as those that do not order posts but preserve features on the length of time between a user’s posts. We find that a model with temporal information may provide slight benefits over the same model without such information, although a RoBERTa transformer model provides enough information to make similar predictions without custom-encoded time information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信