连续时间格上扩散的收敛速率

C. Albanese, A. Mijatović
{"title":"连续时间格上扩散的收敛速率","authors":"C. Albanese, A. Mijatović","doi":"10.2139/ssrn.1018609","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a discretization scheme based on a continuous-time Markov chain for the Black-Scholes diffusion process. Our principal aim is to find the optimal convergence rate for the probability density function of the discretized process as the distance between the nodes of the state-space of the Markov chain goes to zero. The main theorem of the paper (theorem 4.1) states that the probability kernel of the discretized process converges at the rate O(h^2) to the probability density function pt(x, y) of the diffusion process. We also show that this convergence is uniform in the state variables x and y and that the proposed discretization scheme converges at a rate which is no faster than O(h^2).","PeriodicalId":103032,"journal":{"name":"OPER: Analytical (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Convergence Rates for Diffusions on Continuous-Time Lattices\",\"authors\":\"C. Albanese, A. Mijatović\",\"doi\":\"10.2139/ssrn.1018609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a discretization scheme based on a continuous-time Markov chain for the Black-Scholes diffusion process. Our principal aim is to find the optimal convergence rate for the probability density function of the discretized process as the distance between the nodes of the state-space of the Markov chain goes to zero. The main theorem of the paper (theorem 4.1) states that the probability kernel of the discretized process converges at the rate O(h^2) to the probability density function pt(x, y) of the diffusion process. We also show that this convergence is uniform in the state variables x and y and that the proposed discretization scheme converges at a rate which is no faster than O(h^2).\",\"PeriodicalId\":103032,\"journal\":{\"name\":\"OPER: Analytical (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OPER: Analytical (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1018609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OPER: Analytical (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1018609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了一种基于连续时间马尔可夫链的离散化方法。我们的主要目标是找到离散过程的概率密度函数在马尔可夫链状态空间节点之间的距离趋近于零时的最优收敛速率。本文的主要定理(定理4.1)表明,离散过程的概率核以0 (h^2)的速率收敛于扩散过程的概率密度函数pt(x, y)。我们还证明了这种收敛在状态变量x和y中是一致的,并且所提出的离散化方案的收敛速度不超过O(h^2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence Rates for Diffusions on Continuous-Time Lattices
In this paper we introduce a discretization scheme based on a continuous-time Markov chain for the Black-Scholes diffusion process. Our principal aim is to find the optimal convergence rate for the probability density function of the discretized process as the distance between the nodes of the state-space of the Markov chain goes to zero. The main theorem of the paper (theorem 4.1) states that the probability kernel of the discretized process converges at the rate O(h^2) to the probability density function pt(x, y) of the diffusion process. We also show that this convergence is uniform in the state variables x and y and that the proposed discretization scheme converges at a rate which is no faster than O(h^2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信