Andre Xian Ming Chang, Aliasger Zaidy, E. Culurciello
{"title":"深度学习雪花协处理器的高效编译代码生成","authors":"Andre Xian Ming Chang, Aliasger Zaidy, E. Culurciello","doi":"10.1109/EMC2.2018.00013","DOIUrl":null,"url":null,"abstract":"Deep Neural Networks (DNNs) are widely used in various applications including image classification, semantic segmentation and natural language processing. Various DNN models were developed to achieve high accuracy on different tasks. Efficiently mapping the workflow of those models onto custom accelerators requires a programmable hardware and a custom compiler. In this work, we use Snowflake, which is a programmable DNN targeted accelerator. We also present a compiler that correctly generated code for Snowflake. Our system were evaluated on various convolution layers present in AlexNet, ResNet and LightCNN. Snowflake with 256 processing units was implemented on Xilinx FPGA, and it achieved 70 frames/s for AlexNet without linear layers.","PeriodicalId":377872,"journal":{"name":"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient Compiler Code Generation for Deep Learning Snowflake Co-Processor\",\"authors\":\"Andre Xian Ming Chang, Aliasger Zaidy, E. Culurciello\",\"doi\":\"10.1109/EMC2.2018.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Networks (DNNs) are widely used in various applications including image classification, semantic segmentation and natural language processing. Various DNN models were developed to achieve high accuracy on different tasks. Efficiently mapping the workflow of those models onto custom accelerators requires a programmable hardware and a custom compiler. In this work, we use Snowflake, which is a programmable DNN targeted accelerator. We also present a compiler that correctly generated code for Snowflake. Our system were evaluated on various convolution layers present in AlexNet, ResNet and LightCNN. Snowflake with 256 processing units was implemented on Xilinx FPGA, and it achieved 70 frames/s for AlexNet without linear layers.\",\"PeriodicalId\":377872,\"journal\":{\"name\":\"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMC2.2018.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 1st Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMC2.2018.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Compiler Code Generation for Deep Learning Snowflake Co-Processor
Deep Neural Networks (DNNs) are widely used in various applications including image classification, semantic segmentation and natural language processing. Various DNN models were developed to achieve high accuracy on different tasks. Efficiently mapping the workflow of those models onto custom accelerators requires a programmable hardware and a custom compiler. In this work, we use Snowflake, which is a programmable DNN targeted accelerator. We also present a compiler that correctly generated code for Snowflake. Our system were evaluated on various convolution layers present in AlexNet, ResNet and LightCNN. Snowflake with 256 processing units was implemented on Xilinx FPGA, and it achieved 70 frames/s for AlexNet without linear layers.