一种加速基于蒙特卡洛的美式期权定价的功能方法

W. Pawlak, M. Elsman
{"title":"一种加速基于蒙特卡洛的美式期权定价的功能方法","authors":"W. Pawlak, M. Elsman","doi":"10.1145/3412932.3412937","DOIUrl":null,"url":null,"abstract":"We study the feasibility and performance efficiency of expressing a complex financial numerical algorithm with high-level functional parallel constructs. The algorithm we investigate is a least-square regression-based Monte-Carlo simulation for pricing American options. We propose an accelerated parallel implementation in Futhark, a high-level functional data-parallel language. The Futhark language targets GPUs as the compute platform and we achieve a performance comparable to, and in particular cases up to 2.5X better than, an implementation optimised by NVIDIA CUDA engineers. In absolute terms, we can price a put option with 1 million simulation paths and 100 time steps in 17 ms on a NVIDIA Tesla V100 GPU. Furthermore, the high-level functional specification is much more accessible to the financial-domain experts than the low-level CUDA code, thus promoting code maintainability and facilitating algorithmic changes.","PeriodicalId":235054,"journal":{"name":"Proceedings of the 31st Symposium on Implementation and Application of Functional Languages","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A functional approach to accelerating Monte Carlo based american option pricing\",\"authors\":\"W. Pawlak, M. Elsman\",\"doi\":\"10.1145/3412932.3412937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the feasibility and performance efficiency of expressing a complex financial numerical algorithm with high-level functional parallel constructs. The algorithm we investigate is a least-square regression-based Monte-Carlo simulation for pricing American options. We propose an accelerated parallel implementation in Futhark, a high-level functional data-parallel language. The Futhark language targets GPUs as the compute platform and we achieve a performance comparable to, and in particular cases up to 2.5X better than, an implementation optimised by NVIDIA CUDA engineers. In absolute terms, we can price a put option with 1 million simulation paths and 100 time steps in 17 ms on a NVIDIA Tesla V100 GPU. Furthermore, the high-level functional specification is much more accessible to the financial-domain experts than the low-level CUDA code, thus promoting code maintainability and facilitating algorithmic changes.\",\"PeriodicalId\":235054,\"journal\":{\"name\":\"Proceedings of the 31st Symposium on Implementation and Application of Functional Languages\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st Symposium on Implementation and Application of Functional Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3412932.3412937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st Symposium on Implementation and Application of Functional Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3412932.3412937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了用高级函数并行结构表达复杂金融数值算法的可行性和性能效率。我们研究的算法是基于最小二乘回归的蒙特卡罗模拟美国期权定价。我们提出在Futhark中加速并行实现,Futhark是一种高级函数式数据并行语言。Futhark语言的目标是gpu作为计算平台,我们实现的性能可与NVIDIA CUDA工程师优化的实现相媲美,在特定情况下可达2.5倍。在绝对意义上,我们可以在NVIDIA Tesla V100 GPU上用100万个模拟路径和100个时间步在17毫秒内为看跌期权定价。此外,对于金融领域的专家来说,高级功能规范比低级CUDA代码更容易访问,从而提高了代码的可维护性并促进了算法的更改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A functional approach to accelerating Monte Carlo based american option pricing
We study the feasibility and performance efficiency of expressing a complex financial numerical algorithm with high-level functional parallel constructs. The algorithm we investigate is a least-square regression-based Monte-Carlo simulation for pricing American options. We propose an accelerated parallel implementation in Futhark, a high-level functional data-parallel language. The Futhark language targets GPUs as the compute platform and we achieve a performance comparable to, and in particular cases up to 2.5X better than, an implementation optimised by NVIDIA CUDA engineers. In absolute terms, we can price a put option with 1 million simulation paths and 100 time steps in 17 ms on a NVIDIA Tesla V100 GPU. Furthermore, the high-level functional specification is much more accessible to the financial-domain experts than the low-level CUDA code, thus promoting code maintainability and facilitating algorithmic changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信