基于结构的深度学习文档图像表识别方法

Mengxi Zhou, R. Ramnath
{"title":"基于结构的深度学习文档图像表识别方法","authors":"Mengxi Zhou, R. Ramnath","doi":"10.1109/COMPSAC54236.2022.00105","DOIUrl":null,"url":null,"abstract":"In this paper, we present a nuanced exploration of deep-learning techniques (DL) for extracting structural infor-mation from document images generated from the digitization of business processes. The driving example presented is the extraction of columns and rows of tables using a simple stacked CNN architecture and a combination of ensemble techniques. In addition, the component models of the ensemble are diversified by training on datasets created by applying a “semantics-preserving” transformation on the base dataset. This “semantics-preserving” transformation also aims to alleviate hard recognition in certain noisy images commonly encountered in practice. Our experiments demonstrate how DL techniques can be applied and innovatively combined to measurably improve the accuracy of structure extraction.","PeriodicalId":330838,"journal":{"name":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Structure-Focused Deep Learning Approach for Table Recognition from Document Images\",\"authors\":\"Mengxi Zhou, R. Ramnath\",\"doi\":\"10.1109/COMPSAC54236.2022.00105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a nuanced exploration of deep-learning techniques (DL) for extracting structural infor-mation from document images generated from the digitization of business processes. The driving example presented is the extraction of columns and rows of tables using a simple stacked CNN architecture and a combination of ensemble techniques. In addition, the component models of the ensemble are diversified by training on datasets created by applying a “semantics-preserving” transformation on the base dataset. This “semantics-preserving” transformation also aims to alleviate hard recognition in certain noisy images commonly encountered in practice. Our experiments demonstrate how DL techniques can be applied and innovatively combined to measurably improve the accuracy of structure extraction.\",\"PeriodicalId\":330838,\"journal\":{\"name\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC54236.2022.00105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC54236.2022.00105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对深度学习技术(DL)进行了细致的探索,用于从业务流程数字化生成的文档图像中提取结构信息。给出的驱动示例是使用简单的堆叠CNN架构和集成技术的组合提取表的列和行。此外,通过在基础数据集上应用“语义保留”转换创建的数据集上进行训练,集成的组件模型变得多样化。这种“保持语义”的转换也旨在减轻在实践中经常遇到的某些噪声图像的难以识别。我们的实验证明了深度学习技术如何被应用和创新地结合起来,以显著提高结构提取的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Structure-Focused Deep Learning Approach for Table Recognition from Document Images
In this paper, we present a nuanced exploration of deep-learning techniques (DL) for extracting structural infor-mation from document images generated from the digitization of business processes. The driving example presented is the extraction of columns and rows of tables using a simple stacked CNN architecture and a combination of ensemble techniques. In addition, the component models of the ensemble are diversified by training on datasets created by applying a “semantics-preserving” transformation on the base dataset. This “semantics-preserving” transformation also aims to alleviate hard recognition in certain noisy images commonly encountered in practice. Our experiments demonstrate how DL techniques can be applied and innovatively combined to measurably improve the accuracy of structure extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信