{"title":"多约束可再生资源下的可伸缩性能边界","authors":"R. Medhat, S. Funk, B. Rountree","doi":"10.1145/3149412.3149422","DOIUrl":null,"url":null,"abstract":"In the age of exascale computing, it is crucial to provide the best possible performance under power constraints. A major part of this optimization is managing power and bandwidth intelligently in a cluster to maximize performance. There are significant improvements in the power efficiency of HPC runtimes, yet little work has explored our ability to determine the theoretical optimal performance under a give power and bandwidth bound. In this paper, we present a scalable model to identify the optimal power and bandwidth distribution such that the makespan of a program is minimized. We utilize the network flow formulation in constructing a linear program that is efficient to solve. We demonstrate the applicability of the model to MPI programs and provide synthetic benchmarks on the performance of the model.","PeriodicalId":102033,"journal":{"name":"Proceedings of the 5th International Workshop on Energy Efficient Supercomputing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scalable performance bounding under multiple constrained renewable resources\",\"authors\":\"R. Medhat, S. Funk, B. Rountree\",\"doi\":\"10.1145/3149412.3149422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the age of exascale computing, it is crucial to provide the best possible performance under power constraints. A major part of this optimization is managing power and bandwidth intelligently in a cluster to maximize performance. There are significant improvements in the power efficiency of HPC runtimes, yet little work has explored our ability to determine the theoretical optimal performance under a give power and bandwidth bound. In this paper, we present a scalable model to identify the optimal power and bandwidth distribution such that the makespan of a program is minimized. We utilize the network flow formulation in constructing a linear program that is efficient to solve. We demonstrate the applicability of the model to MPI programs and provide synthetic benchmarks on the performance of the model.\",\"PeriodicalId\":102033,\"journal\":{\"name\":\"Proceedings of the 5th International Workshop on Energy Efficient Supercomputing\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Workshop on Energy Efficient Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3149412.3149422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Energy Efficient Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149412.3149422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable performance bounding under multiple constrained renewable resources
In the age of exascale computing, it is crucial to provide the best possible performance under power constraints. A major part of this optimization is managing power and bandwidth intelligently in a cluster to maximize performance. There are significant improvements in the power efficiency of HPC runtimes, yet little work has explored our ability to determine the theoretical optimal performance under a give power and bandwidth bound. In this paper, we present a scalable model to identify the optimal power and bandwidth distribution such that the makespan of a program is minimized. We utilize the network flow formulation in constructing a linear program that is efficient to solve. We demonstrate the applicability of the model to MPI programs and provide synthetic benchmarks on the performance of the model.