基于Stokes向量间欧氏距离的混合pol数据分类

Ajeet Kumar, R. K. Panigrahi
{"title":"基于Stokes向量间欧氏距离的混合pol数据分类","authors":"Ajeet Kumar, R. K. Panigrahi","doi":"10.1109/RADARCONF.2015.7411920","DOIUrl":null,"url":null,"abstract":"In this paper, a new classification technique for hybrid-pol SAR data based on Euclidean distance between Stokes vectors is introduced. The minimum Euclidean distance specifies the maximum similarity between two Stokes vectors which in turn indicates the maximum similarity between polarization behavior of corresponding backscattered waves. On the basis of this similarity, the backscattered wave from a scatterer is classified into three basic scattering mechanisms. We demonstrated that the proposed technique is able to correctly classify the three basic scattering mechanisms and performs better than existing hybrid-pol classification algorithms such as m - δ and m - χ.","PeriodicalId":267194,"journal":{"name":"2015 IEEE Radar Conference","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classification of hybrid-pol data based on Euclidean distance between Stokes vectors\",\"authors\":\"Ajeet Kumar, R. K. Panigrahi\",\"doi\":\"10.1109/RADARCONF.2015.7411920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new classification technique for hybrid-pol SAR data based on Euclidean distance between Stokes vectors is introduced. The minimum Euclidean distance specifies the maximum similarity between two Stokes vectors which in turn indicates the maximum similarity between polarization behavior of corresponding backscattered waves. On the basis of this similarity, the backscattered wave from a scatterer is classified into three basic scattering mechanisms. We demonstrated that the proposed technique is able to correctly classify the three basic scattering mechanisms and performs better than existing hybrid-pol classification algorithms such as m - δ and m - χ.\",\"PeriodicalId\":267194,\"journal\":{\"name\":\"2015 IEEE Radar Conference\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADARCONF.2015.7411920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADARCONF.2015.7411920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于Stokes矢量间欧氏距离的混合极化SAR数据分类新方法。最小欧氏距离表示两个Stokes矢量之间的最大相似度,而Stokes矢量又表示对应的后向散射波的极化行为之间的最大相似度。基于这种相似性,将散射体的后向散射波分为三种基本的散射机制。我们证明了所提出的技术能够正确分类三种基本散射机制,并且比现有的混合pol分类算法(如m - δ和m - χ)表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of hybrid-pol data based on Euclidean distance between Stokes vectors
In this paper, a new classification technique for hybrid-pol SAR data based on Euclidean distance between Stokes vectors is introduced. The minimum Euclidean distance specifies the maximum similarity between two Stokes vectors which in turn indicates the maximum similarity between polarization behavior of corresponding backscattered waves. On the basis of this similarity, the backscattered wave from a scatterer is classified into three basic scattering mechanisms. We demonstrated that the proposed technique is able to correctly classify the three basic scattering mechanisms and performs better than existing hybrid-pol classification algorithms such as m - δ and m - χ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信