{"title":"基于电流体动力学的亚微米线印刷","authors":"Chi Qian, Ruihua Chen, Feilong Wang, Changhai Ru","doi":"10.1109/3M-NANO.2012.6472931","DOIUrl":null,"url":null,"abstract":"Printing techniques develop rapidly especially in the areas of electronics and biotechnology in these decades. In this paper, first we describe the use of electrohydrodynamics for jet printing the lines with the sub-micrometer resolution. It also presents the complex pattern printed by electrohydrodynamics jet printing with the same resolution combined with the automatic control technology. In the second part, we research on the parameters which affect the width of the printed lines by a series of experiments. Such experiments focus on the effect of voltage and distance between the tip of the nozzle and the substrate, in addition, concentration of the printed solution and the inner diameter of the nozzle are also considered.","PeriodicalId":134364,"journal":{"name":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Printing sub-micrometer lines based on electrohydrodynamics\",\"authors\":\"Chi Qian, Ruihua Chen, Feilong Wang, Changhai Ru\",\"doi\":\"10.1109/3M-NANO.2012.6472931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Printing techniques develop rapidly especially in the areas of electronics and biotechnology in these decades. In this paper, first we describe the use of electrohydrodynamics for jet printing the lines with the sub-micrometer resolution. It also presents the complex pattern printed by electrohydrodynamics jet printing with the same resolution combined with the automatic control technology. In the second part, we research on the parameters which affect the width of the printed lines by a series of experiments. Such experiments focus on the effect of voltage and distance between the tip of the nozzle and the substrate, in addition, concentration of the printed solution and the inner diameter of the nozzle are also considered.\",\"PeriodicalId\":134364,\"journal\":{\"name\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2012.6472931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2012.6472931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Printing sub-micrometer lines based on electrohydrodynamics
Printing techniques develop rapidly especially in the areas of electronics and biotechnology in these decades. In this paper, first we describe the use of electrohydrodynamics for jet printing the lines with the sub-micrometer resolution. It also presents the complex pattern printed by electrohydrodynamics jet printing with the same resolution combined with the automatic control technology. In the second part, we research on the parameters which affect the width of the printed lines by a series of experiments. Such experiments focus on the effect of voltage and distance between the tip of the nozzle and the substrate, in addition, concentration of the printed solution and the inner diameter of the nozzle are also considered.