{"title":"使用局部代理辅助进化算法的多模态优化","authors":"J. Fieldsend","doi":"10.1109/UKCI.2013.6651292","DOIUrl":null,"url":null,"abstract":"There has been a steady growth in interest in niching approaches within the evolutionary computation community, as an increasing number of real world problems are discovered that exhibit multi-modality of varying degrees of intensity (modes). It is often useful to locate and memorise the modes encountered - this is because the optimal decision parameter combinations discovered may not be feasible when moving from a mathematical model emulating the real problem to engineering an actual solution, or the model may be in error in some regions. As such a range of disparate modal solutions is of practical use. This paper investigates the use of a collection of localised surrogate models for niche/mode discovery, and analyses the performance of a novel evolutionary algorithm (EA) which embeds these surrogates into its search process. Results obtained are compared to the published performance of state-of-the-art evolutionary algorithms developed for multi-modal problems. We find that using a collection of localised surrogates not only makes the problem tractable from a model-fitting viewpoint, it also produces competitive results with other EA approaches.","PeriodicalId":106191,"journal":{"name":"2013 13th UK Workshop on Computational Intelligence (UKCI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi-modal optimisation using a localised surrogates assisted evolutionary algorithm\",\"authors\":\"J. Fieldsend\",\"doi\":\"10.1109/UKCI.2013.6651292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been a steady growth in interest in niching approaches within the evolutionary computation community, as an increasing number of real world problems are discovered that exhibit multi-modality of varying degrees of intensity (modes). It is often useful to locate and memorise the modes encountered - this is because the optimal decision parameter combinations discovered may not be feasible when moving from a mathematical model emulating the real problem to engineering an actual solution, or the model may be in error in some regions. As such a range of disparate modal solutions is of practical use. This paper investigates the use of a collection of localised surrogate models for niche/mode discovery, and analyses the performance of a novel evolutionary algorithm (EA) which embeds these surrogates into its search process. Results obtained are compared to the published performance of state-of-the-art evolutionary algorithms developed for multi-modal problems. We find that using a collection of localised surrogates not only makes the problem tractable from a model-fitting viewpoint, it also produces competitive results with other EA approaches.\",\"PeriodicalId\":106191,\"journal\":{\"name\":\"2013 13th UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2013.6651292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2013.6651292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-modal optimisation using a localised surrogates assisted evolutionary algorithm
There has been a steady growth in interest in niching approaches within the evolutionary computation community, as an increasing number of real world problems are discovered that exhibit multi-modality of varying degrees of intensity (modes). It is often useful to locate and memorise the modes encountered - this is because the optimal decision parameter combinations discovered may not be feasible when moving from a mathematical model emulating the real problem to engineering an actual solution, or the model may be in error in some regions. As such a range of disparate modal solutions is of practical use. This paper investigates the use of a collection of localised surrogate models for niche/mode discovery, and analyses the performance of a novel evolutionary algorithm (EA) which embeds these surrogates into its search process. Results obtained are compared to the published performance of state-of-the-art evolutionary algorithms developed for multi-modal problems. We find that using a collection of localised surrogates not only makes the problem tractable from a model-fitting viewpoint, it also produces competitive results with other EA approaches.