{"title":"多模型数据的模式推断","authors":"P. Koupil, Sebastián Hricko, I. Holubová","doi":"10.1145/3550355.3552400","DOIUrl":null,"url":null,"abstract":"The knowledge of a structural schema of data is a crucial aspect of most data management tasks. Unfortunately, in many real-world scenarios, the data is not accompanied by it, and schema-inference approaches need to be utilised. In this paper, we focus on a specific and complex use case of multi-model data where several often contradictory features of the combined models must be considered. Hence, single-model approaches cannot be applied straightforwardly. In addition, the data often reach the scale of Big Data, and thus a scalable solution is inevitable. In our approach, we reflect all these challenges. In addition, we can also infer local integrity constraints as well as intra- and inter-model references. Last but not least, we can cope with cross-model data redundancy. Using a set of experiments, we prove the advantages of the proposed approach and we compare it with related work.","PeriodicalId":303547,"journal":{"name":"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Schema inference for multi-model data\",\"authors\":\"P. Koupil, Sebastián Hricko, I. Holubová\",\"doi\":\"10.1145/3550355.3552400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The knowledge of a structural schema of data is a crucial aspect of most data management tasks. Unfortunately, in many real-world scenarios, the data is not accompanied by it, and schema-inference approaches need to be utilised. In this paper, we focus on a specific and complex use case of multi-model data where several often contradictory features of the combined models must be considered. Hence, single-model approaches cannot be applied straightforwardly. In addition, the data often reach the scale of Big Data, and thus a scalable solution is inevitable. In our approach, we reflect all these challenges. In addition, we can also infer local integrity constraints as well as intra- and inter-model references. Last but not least, we can cope with cross-model data redundancy. Using a set of experiments, we prove the advantages of the proposed approach and we compare it with related work.\",\"PeriodicalId\":303547,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3550355.3552400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3550355.3552400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The knowledge of a structural schema of data is a crucial aspect of most data management tasks. Unfortunately, in many real-world scenarios, the data is not accompanied by it, and schema-inference approaches need to be utilised. In this paper, we focus on a specific and complex use case of multi-model data where several often contradictory features of the combined models must be considered. Hence, single-model approaches cannot be applied straightforwardly. In addition, the data often reach the scale of Big Data, and thus a scalable solution is inevitable. In our approach, we reflect all these challenges. In addition, we can also infer local integrity constraints as well as intra- and inter-model references. Last but not least, we can cope with cross-model data redundancy. Using a set of experiments, we prove the advantages of the proposed approach and we compare it with related work.