有效的最小二乘导线调整使用电子表格

T. W. Hu, Francis Tan, Alan Barnes
{"title":"有效的最小二乘导线调整使用电子表格","authors":"T. W. Hu, Francis Tan, Alan Barnes","doi":"10.1080/00050357.2003.10558850","DOIUrl":null,"url":null,"abstract":"This paper establishes the theory and an efficient spreadsheet procedure for direct minimization of squared residuals using the idea of an expanding ellipsoid and Excel’s generalized reduced gradient (GRG) solver. Not requiring any series expansion or programming, the new approach makes least-squares traverse adjustment as easy to apply as the popular Bowditch method, yet restores full mathematical rigor.","PeriodicalId":119818,"journal":{"name":"Australian Surveyor","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Least Squares Traverse Adjustment Using Spreadsheets\",\"authors\":\"T. W. Hu, Francis Tan, Alan Barnes\",\"doi\":\"10.1080/00050357.2003.10558850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes the theory and an efficient spreadsheet procedure for direct minimization of squared residuals using the idea of an expanding ellipsoid and Excel’s generalized reduced gradient (GRG) solver. Not requiring any series expansion or programming, the new approach makes least-squares traverse adjustment as easy to apply as the popular Bowditch method, yet restores full mathematical rigor.\",\"PeriodicalId\":119818,\"journal\":{\"name\":\"Australian Surveyor\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Surveyor\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00050357.2003.10558850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Surveyor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00050357.2003.10558850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用扩展椭球的思想和Excel的广义简化梯度(GRG)求解器,建立了残差平方直接最小化的理论和有效的电子表格程序。不需要任何级数展开或编程,新方法使最小二乘导线调整像流行的鲍迪奇方法一样容易应用,但恢复了完整的数学严谨性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Least Squares Traverse Adjustment Using Spreadsheets
This paper establishes the theory and an efficient spreadsheet procedure for direct minimization of squared residuals using the idea of an expanding ellipsoid and Excel’s generalized reduced gradient (GRG) solver. Not requiring any series expansion or programming, the new approach makes least-squares traverse adjustment as easy to apply as the popular Bowditch method, yet restores full mathematical rigor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信