基于网络拓扑的文本分类——以《古兰经》为例

M. E. Aktas, Esra Akbas
{"title":"基于网络拓扑的文本分类——以《古兰经》为例","authors":"M. E. Aktas, Esra Akbas","doi":"10.1109/ICMLA.2019.00257","DOIUrl":null,"url":null,"abstract":"Due to the growth in the number of texts and documents available online, machine learning based text classification systems are getting more popular recently. Feature extraction, converting unstructured text into a structured feature space, is one of the essential tasks for text classification. In this paper, we propose a novel feature extraction approach for text classification using the network representation of text, network topology, and machine learning techniques. We present experimental results on classifying the Holy Quran chapters based on the place each chapter was revealed to illustrate the effectiveness of the approach.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Text Classification via Network Topology: A Case Study on the Holy Quran\",\"authors\":\"M. E. Aktas, Esra Akbas\",\"doi\":\"10.1109/ICMLA.2019.00257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the growth in the number of texts and documents available online, machine learning based text classification systems are getting more popular recently. Feature extraction, converting unstructured text into a structured feature space, is one of the essential tasks for text classification. In this paper, we propose a novel feature extraction approach for text classification using the network representation of text, network topology, and machine learning techniques. We present experimental results on classifying the Holy Quran chapters based on the place each chapter was revealed to illustrate the effectiveness of the approach.\",\"PeriodicalId\":436714,\"journal\":{\"name\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2019.00257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于在线文本和文档数量的增长,基于机器学习的文本分类系统最近变得越来越流行。特征提取是将非结构化文本转换为结构化特征空间,是文本分类的基本任务之一。在本文中,我们提出了一种新的文本分类特征提取方法,该方法使用文本的网络表示、网络拓扑和机器学习技术。我们给出了基于《古兰经》章节出现的地点对其进行分类的实验结果,以说明该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Classification via Network Topology: A Case Study on the Holy Quran
Due to the growth in the number of texts and documents available online, machine learning based text classification systems are getting more popular recently. Feature extraction, converting unstructured text into a structured feature space, is one of the essential tasks for text classification. In this paper, we propose a novel feature extraction approach for text classification using the network representation of text, network topology, and machine learning techniques. We present experimental results on classifying the Holy Quran chapters based on the place each chapter was revealed to illustrate the effectiveness of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信