基于词嵌入组合性的质心文本摘要

Gaetano Rossiello, Pierpaolo Basile, G. Semeraro
{"title":"基于词嵌入组合性的质心文本摘要","authors":"Gaetano Rossiello, Pierpaolo Basile, G. Semeraro","doi":"10.18653/v1/W17-1003","DOIUrl":null,"url":null,"abstract":"The textual similarity is a crucial aspect for many extractive text summarization methods. A bag-of-words representation does not allow to grasp the semantic relationships between concepts when comparing strongly related sentences with no words in common. To overcome this issue, in this paper we propose a centroid-based method for text summarization that exploits the compositional capabilities of word embeddings. The evaluations on multi-document and multilingual datasets prove the effectiveness of the continuous vector representation of words compared to the bag-of-words model. Despite its simplicity, our method achieves good performance even in comparison to more complex deep learning models. Our method is unsupervised and it can be adopted in other summarization tasks.","PeriodicalId":113878,"journal":{"name":"MultiLing@EACL","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"Centroid-based Text Summarization through Compositionality of Word Embeddings\",\"authors\":\"Gaetano Rossiello, Pierpaolo Basile, G. Semeraro\",\"doi\":\"10.18653/v1/W17-1003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The textual similarity is a crucial aspect for many extractive text summarization methods. A bag-of-words representation does not allow to grasp the semantic relationships between concepts when comparing strongly related sentences with no words in common. To overcome this issue, in this paper we propose a centroid-based method for text summarization that exploits the compositional capabilities of word embeddings. The evaluations on multi-document and multilingual datasets prove the effectiveness of the continuous vector representation of words compared to the bag-of-words model. Despite its simplicity, our method achieves good performance even in comparison to more complex deep learning models. Our method is unsupervised and it can be adopted in other summarization tasks.\",\"PeriodicalId\":113878,\"journal\":{\"name\":\"MultiLing@EACL\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MultiLing@EACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W17-1003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MultiLing@EACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-1003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105

摘要

文本相似度是许多提取文本摘要方法的一个重要方面。当比较没有共同词的强相关句子时,词袋表示不允许掌握概念之间的语义关系。为了克服这个问题,本文提出了一种基于质心的文本摘要方法,该方法利用词嵌入的组合能力。在多文档和多语言数据集上的评价表明,与词袋模型相比,连续向量表示词是有效的。尽管它很简单,但与更复杂的深度学习模型相比,我们的方法取得了良好的性能。我们的方法是无监督的,可以用于其他的摘要任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Centroid-based Text Summarization through Compositionality of Word Embeddings
The textual similarity is a crucial aspect for many extractive text summarization methods. A bag-of-words representation does not allow to grasp the semantic relationships between concepts when comparing strongly related sentences with no words in common. To overcome this issue, in this paper we propose a centroid-based method for text summarization that exploits the compositional capabilities of word embeddings. The evaluations on multi-document and multilingual datasets prove the effectiveness of the continuous vector representation of words compared to the bag-of-words model. Despite its simplicity, our method achieves good performance even in comparison to more complex deep learning models. Our method is unsupervised and it can be adopted in other summarization tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信