Bharat G. Baraskar, Pravin S. Kadhane, T. C. Darvade, A. James, R. Kambale
{"title":"通过Ca2+, Sn4+和Zr4+取代调整其铁电和压电性能的batio3基无铅电陶瓷在电致伸缩器件中的应用","authors":"Bharat G. Baraskar, Pravin S. Kadhane, T. C. Darvade, A. James, R. Kambale","doi":"10.5772/INTECHOPEN.77388","DOIUrl":null,"url":null,"abstract":"Dense microstructure BaTiO3 (BT) ceramic with c/a ~1.0144 and average grain size ~7.8 μm is developed by achieving the ferroelectric parameters Psat. = 24.13 μC/cm2 and Pr = 10.42 μC/cm2 with lower coercive field of Ec = 2.047 kV/cm. For BT ceramic, the “sprout” shape nature is observed for strain-electric field measurements with remnant strain ~ 0.212%, converse piezoelectric constant ~376.35 pm/V and electrostrictive coefficient Q33~ 0.03493 m4/C2. To tune the piezoelectric properties of BT ceramic, the substitutions of Ca2+ and Sn4+, Zr4+ are done for Ba2+ and Ti4+ sites respectively. The Ba0.7Ca0.3Ti1-xSnxO3 (x = 0.00, 0.025, 0.050, 0.075, and 0.1, BCST) system was studied with ferroelectric, piezoelectric and electrostrictive properties. The electrostrictive coefficient (Q33) ~ 0.0667 m4/C2 was observed for x = 0.075 and it is higher than the lead-based electrostrictive materials. Another (1-X) Ba0.95Ca0.05Ti0.92Sn0.08O3 (BCST) – (X) Ba0.95Ca0.05Ti0.92Zr0.08O3 (BCZT), ceramics (x = 0.00, 0.25, 0.50, 0.75, and 1) is studied. The BCST-BCZT ceramic system shows the increase of polymorphic phase transition temperatures toward the room temperature by Ca2+, Sn4+ and Zr4+ substitution. For BCST-BCZT system the composition x = 0.75 exhibits the d33, and Q33 values of 310 pC/N, 385 pm/V and 0.089 m4/C2 respectively which is greater than BT ceramics.","PeriodicalId":224298,"journal":{"name":"Ferroelectrics and Their Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"BaTiO3-Based Lead-Free Electroceramics with Their Ferroelectric and Piezoelectric Properties Tuned by Ca2+, Sn4+ and Zr4+ Substitution Useful for Electrostrictive Device Application\",\"authors\":\"Bharat G. Baraskar, Pravin S. Kadhane, T. C. Darvade, A. James, R. Kambale\",\"doi\":\"10.5772/INTECHOPEN.77388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dense microstructure BaTiO3 (BT) ceramic with c/a ~1.0144 and average grain size ~7.8 μm is developed by achieving the ferroelectric parameters Psat. = 24.13 μC/cm2 and Pr = 10.42 μC/cm2 with lower coercive field of Ec = 2.047 kV/cm. For BT ceramic, the “sprout” shape nature is observed for strain-electric field measurements with remnant strain ~ 0.212%, converse piezoelectric constant ~376.35 pm/V and electrostrictive coefficient Q33~ 0.03493 m4/C2. To tune the piezoelectric properties of BT ceramic, the substitutions of Ca2+ and Sn4+, Zr4+ are done for Ba2+ and Ti4+ sites respectively. The Ba0.7Ca0.3Ti1-xSnxO3 (x = 0.00, 0.025, 0.050, 0.075, and 0.1, BCST) system was studied with ferroelectric, piezoelectric and electrostrictive properties. The electrostrictive coefficient (Q33) ~ 0.0667 m4/C2 was observed for x = 0.075 and it is higher than the lead-based electrostrictive materials. Another (1-X) Ba0.95Ca0.05Ti0.92Sn0.08O3 (BCST) – (X) Ba0.95Ca0.05Ti0.92Zr0.08O3 (BCZT), ceramics (x = 0.00, 0.25, 0.50, 0.75, and 1) is studied. The BCST-BCZT ceramic system shows the increase of polymorphic phase transition temperatures toward the room temperature by Ca2+, Sn4+ and Zr4+ substitution. For BCST-BCZT system the composition x = 0.75 exhibits the d33, and Q33 values of 310 pC/N, 385 pm/V and 0.089 m4/C2 respectively which is greater than BT ceramics.\",\"PeriodicalId\":224298,\"journal\":{\"name\":\"Ferroelectrics and Their Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferroelectrics and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.77388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferroelectrics and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.77388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BaTiO3-Based Lead-Free Electroceramics with Their Ferroelectric and Piezoelectric Properties Tuned by Ca2+, Sn4+ and Zr4+ Substitution Useful for Electrostrictive Device Application
Dense microstructure BaTiO3 (BT) ceramic with c/a ~1.0144 and average grain size ~7.8 μm is developed by achieving the ferroelectric parameters Psat. = 24.13 μC/cm2 and Pr = 10.42 μC/cm2 with lower coercive field of Ec = 2.047 kV/cm. For BT ceramic, the “sprout” shape nature is observed for strain-electric field measurements with remnant strain ~ 0.212%, converse piezoelectric constant ~376.35 pm/V and electrostrictive coefficient Q33~ 0.03493 m4/C2. To tune the piezoelectric properties of BT ceramic, the substitutions of Ca2+ and Sn4+, Zr4+ are done for Ba2+ and Ti4+ sites respectively. The Ba0.7Ca0.3Ti1-xSnxO3 (x = 0.00, 0.025, 0.050, 0.075, and 0.1, BCST) system was studied with ferroelectric, piezoelectric and electrostrictive properties. The electrostrictive coefficient (Q33) ~ 0.0667 m4/C2 was observed for x = 0.075 and it is higher than the lead-based electrostrictive materials. Another (1-X) Ba0.95Ca0.05Ti0.92Sn0.08O3 (BCST) – (X) Ba0.95Ca0.05Ti0.92Zr0.08O3 (BCZT), ceramics (x = 0.00, 0.25, 0.50, 0.75, and 1) is studied. The BCST-BCZT ceramic system shows the increase of polymorphic phase transition temperatures toward the room temperature by Ca2+, Sn4+ and Zr4+ substitution. For BCST-BCZT system the composition x = 0.75 exhibits the d33, and Q33 values of 310 pC/N, 385 pm/V and 0.089 m4/C2 respectively which is greater than BT ceramics.