利用电磁辐射远距离探测手机摄像头状态

B. Yilmaz, E. Ugurlu, Milos Prvulović, A. Zajić
{"title":"利用电磁辐射远距离探测手机摄像头状态","authors":"B. Yilmaz, E. Ugurlu, Milos Prvulović, A. Zajić","doi":"10.1109/MILCOM47813.2019.9021060","DOIUrl":null,"url":null,"abstract":"This paper investigates unintended radiated emissions from cellphones to identify operational status of rear/front camera. We implement a supervised learning method to achieve our goal. In the training phase, we collect data for possible combinations of phone model and camera status. Then, we apply two-phase-dimension-reduction method for better and effective classification. The first dimension-reduction phase is averaging magnitudes of frequency components of a sliding window, which is followed by applying principle component analysis (PCA) technique to reduce the dimension further. In testing phase, k-Nearest-Neighbors (k-NN) algorithm is utilized to classify test data. Finally, we provide examples to show that emanated EM signals from cellphone cameras can exfiltrate useful information.","PeriodicalId":371812,"journal":{"name":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Detecting Cellphone Camera Status at Distance by Exploiting Electromagnetic Emanations\",\"authors\":\"B. Yilmaz, E. Ugurlu, Milos Prvulović, A. Zajić\",\"doi\":\"10.1109/MILCOM47813.2019.9021060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates unintended radiated emissions from cellphones to identify operational status of rear/front camera. We implement a supervised learning method to achieve our goal. In the training phase, we collect data for possible combinations of phone model and camera status. Then, we apply two-phase-dimension-reduction method for better and effective classification. The first dimension-reduction phase is averaging magnitudes of frequency components of a sliding window, which is followed by applying principle component analysis (PCA) technique to reduce the dimension further. In testing phase, k-Nearest-Neighbors (k-NN) algorithm is utilized to classify test data. Finally, we provide examples to show that emanated EM signals from cellphone cameras can exfiltrate useful information.\",\"PeriodicalId\":371812,\"journal\":{\"name\":\"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM47813.2019.9021060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM47813.2019.9021060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了手机的意外辐射发射,以识别后置/前置摄像头的运行状态。我们实现了一种监督学习方法来实现我们的目标。在训练阶段,我们收集手机型号和相机状态可能组合的数据。然后,我们采用两相降维方法进行更好、更有效的分类。第一个降维阶段是对滑动窗口的频率分量进行平均,然后应用主成分分析(PCA)技术进一步降维。在测试阶段,利用k-最近邻算法对测试数据进行分类。最后,我们提供的例子表明,从手机相机发出的电磁信号可以泄露有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Cellphone Camera Status at Distance by Exploiting Electromagnetic Emanations
This paper investigates unintended radiated emissions from cellphones to identify operational status of rear/front camera. We implement a supervised learning method to achieve our goal. In the training phase, we collect data for possible combinations of phone model and camera status. Then, we apply two-phase-dimension-reduction method for better and effective classification. The first dimension-reduction phase is averaging magnitudes of frequency components of a sliding window, which is followed by applying principle component analysis (PCA) technique to reduce the dimension further. In testing phase, k-Nearest-Neighbors (k-NN) algorithm is utilized to classify test data. Finally, we provide examples to show that emanated EM signals from cellphone cameras can exfiltrate useful information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信