基于遗传算法的一类神经网络传递函数优化方法

M. Beddoes, R. Ward
{"title":"基于遗传算法的一类神经网络传递函数优化方法","authors":"M. Beddoes, R. Ward","doi":"10.1109/ICDSP.2002.1028345","DOIUrl":null,"url":null,"abstract":"This paper proposes a hybrid of two methods to determine the weight-constants in a class of artificial neuron networks, ANNs. The class of ANNs we are interested in are characterized by feed-forward processing elements. One of the methods is the genetic algorithm, GA; the other is \"training through\" back-propagation of the error, BPE. We expect our hybrid scheme to be faster than using BPE alone.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A possible genetic-algorithm based method for optimizing a class of ANN transfer functions\",\"authors\":\"M. Beddoes, R. Ward\",\"doi\":\"10.1109/ICDSP.2002.1028345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a hybrid of two methods to determine the weight-constants in a class of artificial neuron networks, ANNs. The class of ANNs we are interested in are characterized by feed-forward processing elements. One of the methods is the genetic algorithm, GA; the other is \\\"training through\\\" back-propagation of the error, BPE. We expect our hybrid scheme to be faster than using BPE alone.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种混合的两种方法来确定一类人工神经元网络的权重常数。我们感兴趣的一类人工神经网络具有前馈处理元素的特征。其中一种方法是遗传算法(GA);另一种是通过误差的反向传播(BPE)进行“训练”。我们希望我们的混合方案比单独使用BPE更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A possible genetic-algorithm based method for optimizing a class of ANN transfer functions
This paper proposes a hybrid of two methods to determine the weight-constants in a class of artificial neuron networks, ANNs. The class of ANNs we are interested in are characterized by feed-forward processing elements. One of the methods is the genetic algorithm, GA; the other is "training through" back-propagation of the error, BPE. We expect our hybrid scheme to be faster than using BPE alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信