锂离子电池的建模与充电状态估计研究

Dong Sun, Xikun Chen, Y. Ruan
{"title":"锂离子电池的建模与充电状态估计研究","authors":"Dong Sun, Xikun Chen, Y. Ruan","doi":"10.1109/PEAC.2014.7038070","DOIUrl":null,"url":null,"abstract":"Based on the equivalent circuit model (ECM) of lithium-ion battery, this paper introduces an autoregressive and moving average with exogenous input (ARMAX) model. A recursive extended least square algorithm with forgetting factor is employed as the model parameter identification method, because there is a colored noise in operating process. Then HPPC test was conducted on a 20Ah LiFePO4 cell and the RC ECM parameters available were identified under different SOCs and different current rates. For higher accuracy SOC estimation and uncertainty reduction, strong tracking filter based on cubature Kalman framework (ST-CKF) is adopted as the SOC estimator to compensate for the drawback of nonlinear Kalman filter. The experimental results in UDDS test show that the ST-CKF estimator is more accurate than extended Kalman filter algorithm with the maximum estimated error about 1.8%.","PeriodicalId":309780,"journal":{"name":"2014 International Power Electronics and Application Conference and Exposition","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Research on modeling and state of charge estimation for lithium-ion battery\",\"authors\":\"Dong Sun, Xikun Chen, Y. Ruan\",\"doi\":\"10.1109/PEAC.2014.7038070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the equivalent circuit model (ECM) of lithium-ion battery, this paper introduces an autoregressive and moving average with exogenous input (ARMAX) model. A recursive extended least square algorithm with forgetting factor is employed as the model parameter identification method, because there is a colored noise in operating process. Then HPPC test was conducted on a 20Ah LiFePO4 cell and the RC ECM parameters available were identified under different SOCs and different current rates. For higher accuracy SOC estimation and uncertainty reduction, strong tracking filter based on cubature Kalman framework (ST-CKF) is adopted as the SOC estimator to compensate for the drawback of nonlinear Kalman filter. The experimental results in UDDS test show that the ST-CKF estimator is more accurate than extended Kalman filter algorithm with the maximum estimated error about 1.8%.\",\"PeriodicalId\":309780,\"journal\":{\"name\":\"2014 International Power Electronics and Application Conference and Exposition\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Power Electronics and Application Conference and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEAC.2014.7038070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Power Electronics and Application Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEAC.2014.7038070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在锂离子电池等效电路模型(ECM)的基础上,提出了一种带外源输入的自回归移动平均(ARMAX)模型。由于操作过程中存在有色噪声,采用带遗忘因子的递推扩展最小二乘算法作为模型参数辨识方法。然后在20Ah的LiFePO4电池上进行了HPPC测试,并确定了不同soc和不同电流速率下的RC ECM参数。为了提高荷电状态估计精度和降低不确定性,采用基于cubature Kalman框架的强跟踪滤波器(ST-CKF)作为荷电状态估计器,弥补了非线性卡尔曼滤波器的不足。UDDS测试的实验结果表明,ST-CKF估计器比扩展卡尔曼滤波算法更准确,最大估计误差约为1.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on modeling and state of charge estimation for lithium-ion battery
Based on the equivalent circuit model (ECM) of lithium-ion battery, this paper introduces an autoregressive and moving average with exogenous input (ARMAX) model. A recursive extended least square algorithm with forgetting factor is employed as the model parameter identification method, because there is a colored noise in operating process. Then HPPC test was conducted on a 20Ah LiFePO4 cell and the RC ECM parameters available were identified under different SOCs and different current rates. For higher accuracy SOC estimation and uncertainty reduction, strong tracking filter based on cubature Kalman framework (ST-CKF) is adopted as the SOC estimator to compensate for the drawback of nonlinear Kalman filter. The experimental results in UDDS test show that the ST-CKF estimator is more accurate than extended Kalman filter algorithm with the maximum estimated error about 1.8%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信