{"title":"基于机器学习的自组织5G网络的最优容量最短路径路由","authors":"Chetana V. Murudkar, R. Gitlin","doi":"10.1109/WAMICON.2019.8765434","DOIUrl":null,"url":null,"abstract":"Machine learning is expected to be a key enabler in 5G wireless self-organizing networks (SONs) that will be significantly more autonomous, smarter, adaptable and user-centric than current networks. This paper proposes a methodology, User Specific-Optimal Capacity Shortest Path (US-OCSP) routing, that uses machine learning to determine the resource-based optimum-capacity shortest path for a user between source and destination. The methodology takes into account two primary metrics, available capacity at network nodes (eNodeBs/gNodeBs) and distance, that are critical in determining the optimal path for an end-user. An ns-3 simulation determines the capacity, which is measured by the availability of resources [i.e., Physical Resource Blocks (PRBs)] at all possible serving network nodes between the source and destination, that is followed by implementation of Q-learning, a reinforcement type of machine learning algorithm that determines the shortest path avoiding congested network nodes so as to achieve the required throughput and/or bit rate. The ability to determine the optimal-capacity shortest path route will facilitate effective resource allocation that will optimize end-user satisfaction in a 5G SON network.","PeriodicalId":328717,"journal":{"name":"2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Optimal-Capacity, Shortest Path Routing in Self-Organizing 5G Networks using Machine Learning\",\"authors\":\"Chetana V. Murudkar, R. Gitlin\",\"doi\":\"10.1109/WAMICON.2019.8765434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is expected to be a key enabler in 5G wireless self-organizing networks (SONs) that will be significantly more autonomous, smarter, adaptable and user-centric than current networks. This paper proposes a methodology, User Specific-Optimal Capacity Shortest Path (US-OCSP) routing, that uses machine learning to determine the resource-based optimum-capacity shortest path for a user between source and destination. The methodology takes into account two primary metrics, available capacity at network nodes (eNodeBs/gNodeBs) and distance, that are critical in determining the optimal path for an end-user. An ns-3 simulation determines the capacity, which is measured by the availability of resources [i.e., Physical Resource Blocks (PRBs)] at all possible serving network nodes between the source and destination, that is followed by implementation of Q-learning, a reinforcement type of machine learning algorithm that determines the shortest path avoiding congested network nodes so as to achieve the required throughput and/or bit rate. The ability to determine the optimal-capacity shortest path route will facilitate effective resource allocation that will optimize end-user satisfaction in a 5G SON network.\",\"PeriodicalId\":328717,\"journal\":{\"name\":\"2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAMICON.2019.8765434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAMICON.2019.8765434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal-Capacity, Shortest Path Routing in Self-Organizing 5G Networks using Machine Learning
Machine learning is expected to be a key enabler in 5G wireless self-organizing networks (SONs) that will be significantly more autonomous, smarter, adaptable and user-centric than current networks. This paper proposes a methodology, User Specific-Optimal Capacity Shortest Path (US-OCSP) routing, that uses machine learning to determine the resource-based optimum-capacity shortest path for a user between source and destination. The methodology takes into account two primary metrics, available capacity at network nodes (eNodeBs/gNodeBs) and distance, that are critical in determining the optimal path for an end-user. An ns-3 simulation determines the capacity, which is measured by the availability of resources [i.e., Physical Resource Blocks (PRBs)] at all possible serving network nodes between the source and destination, that is followed by implementation of Q-learning, a reinforcement type of machine learning algorithm that determines the shortest path avoiding congested network nodes so as to achieve the required throughput and/or bit rate. The ability to determine the optimal-capacity shortest path route will facilitate effective resource allocation that will optimize end-user satisfaction in a 5G SON network.