长程源的前缀和熵率

Ioannis Kontoyiannis, Y. Suhov
{"title":"长程源的前缀和熵率","authors":"Ioannis Kontoyiannis, Y. Suhov","doi":"10.1109/ISIT.1994.394774","DOIUrl":null,"url":null,"abstract":"The asymptotic a.s.-relation H=lim/sub n/spl rarr//spl infin//[(nlogn)/(/spl Sigma//sub i=1//sup n/L/sub i//sup n/(X))] is derived for any finite-valued stationary ergodic process X=(X/sub n/, n/spl isin/Z) that satisfies a Doeblin-type condition: there exists r/spl ges/1 such that ess/sub x/inf P(X/sub n+1/|x/sub /spl rarr//spl infin/,n/)/spl ges//spl alpha/>0. Here, H is the entropy rate of the process X, and L/sub i//sup n/(X) is the length of a shortest prefix in X which is initiated at time i and is not repeated among the prefixes initiated at times j, 1/spl les/i/spl ne/J/spl les/n. The validity of this limiting result was established by Shields in 1989 for i.i.d. processes and also for irreducible aperiodic Markov chains. Under our new condition, we prove that this holds for a wider class of processes, that may have infinite memory.<<ETX>>","PeriodicalId":331390,"journal":{"name":"Proceedings of 1994 IEEE International Symposium on Information Theory","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Prefixes and the entropy rate for long-range sources\",\"authors\":\"Ioannis Kontoyiannis, Y. Suhov\",\"doi\":\"10.1109/ISIT.1994.394774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The asymptotic a.s.-relation H=lim/sub n/spl rarr//spl infin//[(nlogn)/(/spl Sigma//sub i=1//sup n/L/sub i//sup n/(X))] is derived for any finite-valued stationary ergodic process X=(X/sub n/, n/spl isin/Z) that satisfies a Doeblin-type condition: there exists r/spl ges/1 such that ess/sub x/inf P(X/sub n+1/|x/sub /spl rarr//spl infin/,n/)/spl ges//spl alpha/>0. Here, H is the entropy rate of the process X, and L/sub i//sup n/(X) is the length of a shortest prefix in X which is initiated at time i and is not repeated among the prefixes initiated at times j, 1/spl les/i/spl ne/J/spl les/n. The validity of this limiting result was established by Shields in 1989 for i.i.d. processes and also for irreducible aperiodic Markov chains. Under our new condition, we prove that this holds for a wider class of processes, that may have infinite memory.<<ETX>>\",\"PeriodicalId\":331390,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.1994.394774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.1994.394774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

对于满足doeblin型条件的任意有限值平稳遍历过程X=(X/sub n/,n/ spl isin/Z),导出了渐近a.s -关系H=lim/sub n/spl rarr//spl infin//[(nlogn)/(/spl Sigma//sub i=1//sup n/L/sub i//sup n/(X))]:存在r/spl ges/1,使得ess/sub X/ infp (X/sub n+1/| X/sub /spl rarr//spl infin/,n/)/spl ges//spl alpha/>。其中,H是过程X的熵率,L/sub i//sup n/(X)是X中最短前缀的长度,该前缀在时间i启动,并且在时间j、1/spl les/i/spl ne/ j /spl les/n启动的前缀中不重复。1989年,Shields建立了这一极限结果对i - id过程和不可约非周期马尔可夫链的有效性。在我们的新条件下,我们证明了这适用于更广泛的进程类别,这些进程可能具有无限的内存
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prefixes and the entropy rate for long-range sources
The asymptotic a.s.-relation H=lim/sub n/spl rarr//spl infin//[(nlogn)/(/spl Sigma//sub i=1//sup n/L/sub i//sup n/(X))] is derived for any finite-valued stationary ergodic process X=(X/sub n/, n/spl isin/Z) that satisfies a Doeblin-type condition: there exists r/spl ges/1 such that ess/sub x/inf P(X/sub n+1/|x/sub /spl rarr//spl infin/,n/)/spl ges//spl alpha/>0. Here, H is the entropy rate of the process X, and L/sub i//sup n/(X) is the length of a shortest prefix in X which is initiated at time i and is not repeated among the prefixes initiated at times j, 1/spl les/i/spl ne/J/spl les/n. The validity of this limiting result was established by Shields in 1989 for i.i.d. processes and also for irreducible aperiodic Markov chains. Under our new condition, we prove that this holds for a wider class of processes, that may have infinite memory.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信