{"title":"生物网络中的模块:识别与应用","authors":"Bing Zhang, Zhiao Shi","doi":"10.4018/978-1-60960-491-2.ch011","DOIUrl":null,"url":null,"abstract":"One of the most prominent properties of networks representing complex systems is modularity. Networkbased module identification has captured the attention of a diverse group of scientists from various domains and a variety of methods have been developed. The ability to decompose complex biological systems into modules allows the use of modules rather than individual genes as units in biological studies. A modular view is shaping research methods in biology. Module-based approaches have found broad applications in protein complex identification, protein function prediction, protein expression prediction, as well as disease studies. Compared to single gene-level analyses, module-level analyses offer higher robustness and sensitivity. More importantly, module-level analyses can lead to a better understanding of the design and organization of complex biological systems. DOI: 10.4018/978-1-60960-491-2.ch011","PeriodicalId":254251,"journal":{"name":"Handbook of Research on Computational and Systems Biology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modules in Biological Networks: Identification and Application\",\"authors\":\"Bing Zhang, Zhiao Shi\",\"doi\":\"10.4018/978-1-60960-491-2.ch011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most prominent properties of networks representing complex systems is modularity. Networkbased module identification has captured the attention of a diverse group of scientists from various domains and a variety of methods have been developed. The ability to decompose complex biological systems into modules allows the use of modules rather than individual genes as units in biological studies. A modular view is shaping research methods in biology. Module-based approaches have found broad applications in protein complex identification, protein function prediction, protein expression prediction, as well as disease studies. Compared to single gene-level analyses, module-level analyses offer higher robustness and sensitivity. More importantly, module-level analyses can lead to a better understanding of the design and organization of complex biological systems. DOI: 10.4018/978-1-60960-491-2.ch011\",\"PeriodicalId\":254251,\"journal\":{\"name\":\"Handbook of Research on Computational and Systems Biology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Research on Computational and Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-60960-491-2.ch011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Research on Computational and Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-60960-491-2.ch011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modules in Biological Networks: Identification and Application
One of the most prominent properties of networks representing complex systems is modularity. Networkbased module identification has captured the attention of a diverse group of scientists from various domains and a variety of methods have been developed. The ability to decompose complex biological systems into modules allows the use of modules rather than individual genes as units in biological studies. A modular view is shaping research methods in biology. Module-based approaches have found broad applications in protein complex identification, protein function prediction, protein expression prediction, as well as disease studies. Compared to single gene-level analyses, module-level analyses offer higher robustness and sensitivity. More importantly, module-level analyses can lead to a better understanding of the design and organization of complex biological systems. DOI: 10.4018/978-1-60960-491-2.ch011