{"title":"乳房x光片中肿块异常的纹理分类","authors":"Sooncheol Baeg, N. Kehtarnavaz","doi":"10.1109/CBMS.2000.856894","DOIUrl":null,"url":null,"abstract":"This paper presents a scheme for the classification of mass abnormalities in digitized or digital mammograms based on two novel image texture features. The first texture feature provides a measure of smoothness/denseness and is obtained by applying a morphological operator to maxima/minima image points. The second texture feature reflects a measure of architectural distortion and is derived from image gradients. A three-layer backpropagation neural network is used as the classifier. The performance of the classification scheme is evaluated by carrying out a receiver operating characteristic (ROC) analysis. Classification of 150 biopsy proven masses into benign and malignant classes resulted in a ROC area of 0.91. The results obtained demonstrate the potential of using this scheme as an electronic second opinion to lower the number of unnecessary biopsies.","PeriodicalId":189930,"journal":{"name":"Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Texture based classification of mass abnormalities in mammograms\",\"authors\":\"Sooncheol Baeg, N. Kehtarnavaz\",\"doi\":\"10.1109/CBMS.2000.856894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a scheme for the classification of mass abnormalities in digitized or digital mammograms based on two novel image texture features. The first texture feature provides a measure of smoothness/denseness and is obtained by applying a morphological operator to maxima/minima image points. The second texture feature reflects a measure of architectural distortion and is derived from image gradients. A three-layer backpropagation neural network is used as the classifier. The performance of the classification scheme is evaluated by carrying out a receiver operating characteristic (ROC) analysis. Classification of 150 biopsy proven masses into benign and malignant classes resulted in a ROC area of 0.91. The results obtained demonstrate the potential of using this scheme as an electronic second opinion to lower the number of unnecessary biopsies.\",\"PeriodicalId\":189930,\"journal\":{\"name\":\"Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2000.856894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 13th IEEE Symposium on Computer-Based Medical Systems. CBMS 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2000.856894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Texture based classification of mass abnormalities in mammograms
This paper presents a scheme for the classification of mass abnormalities in digitized or digital mammograms based on two novel image texture features. The first texture feature provides a measure of smoothness/denseness and is obtained by applying a morphological operator to maxima/minima image points. The second texture feature reflects a measure of architectural distortion and is derived from image gradients. A three-layer backpropagation neural network is used as the classifier. The performance of the classification scheme is evaluated by carrying out a receiver operating characteristic (ROC) analysis. Classification of 150 biopsy proven masses into benign and malignant classes resulted in a ROC area of 0.91. The results obtained demonstrate the potential of using this scheme as an electronic second opinion to lower the number of unnecessary biopsies.