基于统计模型的错误参考书目属性提取

A. Takasu
{"title":"基于统计模型的错误参考书目属性提取","authors":"A. Takasu","doi":"10.1109/JCDL.2003.1204843","DOIUrl":null,"url":null,"abstract":"We propose a method for extracting bibliographic attributes from reference strings captured using optical character recognition (OCR) and an extended hidden Markov model. Bibliographic attribute extraction can be used in two ways. One is reference parsing in which attribute values are extracted from OCR-processed references for bibliographic matching. The other is reference alignment in which attribute values are aligned to the bibliographic record to enrich the vocabulary of the bibliographic database. We first propose a statistical model for attribute extraction that represents both the syntactical structure of references and OCR error patterns. Then, we perform experiments using bibliographic references obtained from scanned images of papers in journals and transactions and show that useful attribute values are extracted from OCR-processed references. We also show that the proposed model has advantages in reducing the cost of preparing training data, a critical problem in rule-based systems.","PeriodicalId":248854,"journal":{"name":"2003 Joint Conference on Digital Libraries, 2003. Proceedings.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Bibliographic attribute extraction from erroneous references based on a statistical model\",\"authors\":\"A. Takasu\",\"doi\":\"10.1109/JCDL.2003.1204843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method for extracting bibliographic attributes from reference strings captured using optical character recognition (OCR) and an extended hidden Markov model. Bibliographic attribute extraction can be used in two ways. One is reference parsing in which attribute values are extracted from OCR-processed references for bibliographic matching. The other is reference alignment in which attribute values are aligned to the bibliographic record to enrich the vocabulary of the bibliographic database. We first propose a statistical model for attribute extraction that represents both the syntactical structure of references and OCR error patterns. Then, we perform experiments using bibliographic references obtained from scanned images of papers in journals and transactions and show that useful attribute values are extracted from OCR-processed references. We also show that the proposed model has advantages in reducing the cost of preparing training data, a critical problem in rule-based systems.\",\"PeriodicalId\":248854,\"journal\":{\"name\":\"2003 Joint Conference on Digital Libraries, 2003. Proceedings.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 Joint Conference on Digital Libraries, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCDL.2003.1204843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Joint Conference on Digital Libraries, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCDL.2003.1204843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

我们提出了一种利用光学字符识别(OCR)和扩展隐马尔可夫模型从捕获的参考字符串中提取书目属性的方法。书目属性提取有两种方法。一种是引用解析,其中从经过ocr处理的引用中提取属性值以进行书目匹配。另一种是参考对齐,将属性值与书目记录对齐,以丰富书目数据库的词汇表。我们首先提出了一个属性提取的统计模型,该模型既表示引用的语法结构,也表示OCR错误模式。然后,我们使用从期刊和交易论文的扫描图像中获得的书目参考文献进行实验,并证明从ocr处理的参考文献中提取了有用的属性值。我们还表明,所提出的模型在降低准备训练数据的成本方面具有优势,这是基于规则的系统中的一个关键问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bibliographic attribute extraction from erroneous references based on a statistical model
We propose a method for extracting bibliographic attributes from reference strings captured using optical character recognition (OCR) and an extended hidden Markov model. Bibliographic attribute extraction can be used in two ways. One is reference parsing in which attribute values are extracted from OCR-processed references for bibliographic matching. The other is reference alignment in which attribute values are aligned to the bibliographic record to enrich the vocabulary of the bibliographic database. We first propose a statistical model for attribute extraction that represents both the syntactical structure of references and OCR error patterns. Then, we perform experiments using bibliographic references obtained from scanned images of papers in journals and transactions and show that useful attribute values are extracted from OCR-processed references. We also show that the proposed model has advantages in reducing the cost of preparing training data, a critical problem in rule-based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信