基于半二次最小化的基线频谱估计

V. Mazet, D. Brie, J. Idier
{"title":"基于半二次最小化的基线频谱估计","authors":"V. Mazet, D. Brie, J. Idier","doi":"10.5281/ZENODO.38472","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to estimate the spectrum baseline. Basically, it consists in finding a low-order polynomial that minimizes the non-quadratic cost function. The optimization problem is solved using half-quadratic minimization. Two different cost functions are considered: firstly, the hyperbolic function which can be minimized using the algorithm ARTUR; secondly, the asymmetric truncated quadratic, which is minimized with the algorithm LEGEND. The latter gives the best results. This can be attributed to its asymmetric shape and its constant part for high positive values, making it better adapted to the problem than the hyperbolic function. The performances of these approaches are illustrated both on a real and simulated spectra and the choice of the hyperparameters is also discussed.","PeriodicalId":347658,"journal":{"name":"2004 12th European Signal Processing Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Baseline spectrum estimation using half-quadratic minimization\",\"authors\":\"V. Mazet, D. Brie, J. Idier\",\"doi\":\"10.5281/ZENODO.38472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method to estimate the spectrum baseline. Basically, it consists in finding a low-order polynomial that minimizes the non-quadratic cost function. The optimization problem is solved using half-quadratic minimization. Two different cost functions are considered: firstly, the hyperbolic function which can be minimized using the algorithm ARTUR; secondly, the asymmetric truncated quadratic, which is minimized with the algorithm LEGEND. The latter gives the best results. This can be attributed to its asymmetric shape and its constant part for high positive values, making it better adapted to the problem than the hyperbolic function. The performances of these approaches are illustrated both on a real and simulated spectra and the choice of the hyperparameters is also discussed.\",\"PeriodicalId\":347658,\"journal\":{\"name\":\"2004 12th European Signal Processing Conference\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 12th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.38472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 12th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.38472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种估计光谱基线的方法。基本上,它包括找到一个低阶多项式,使非二次代价函数最小化。利用半二次最小化法求解优化问题。考虑了两种不同的代价函数:第一种是使用ARTUR算法最小化的双曲函数;其次,采用LEGEND算法对非对称截断二次型进行最小化。后者的效果最好。这可以归因于它的不对称形状和它的常数部分为高正值,使其比双曲函数更适合问题。这些方法分别在真实光谱和模拟光谱上的性能进行了说明,并讨论了超参数的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Baseline spectrum estimation using half-quadratic minimization
In this paper, we propose a method to estimate the spectrum baseline. Basically, it consists in finding a low-order polynomial that minimizes the non-quadratic cost function. The optimization problem is solved using half-quadratic minimization. Two different cost functions are considered: firstly, the hyperbolic function which can be minimized using the algorithm ARTUR; secondly, the asymmetric truncated quadratic, which is minimized with the algorithm LEGEND. The latter gives the best results. This can be attributed to its asymmetric shape and its constant part for high positive values, making it better adapted to the problem than the hyperbolic function. The performances of these approaches are illustrated both on a real and simulated spectra and the choice of the hyperparameters is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信